Computers in biology and medicine
-
With the recent outbreak of COVID-19, fast diagnostic testing has become one of the major challenges due to the critical shortage of test kit. Pneumonia, a major effect of COVID-19, needs to be urgently diagnosed along with its underlying reasons. In this paper, deep learning aided automated COVID-19 and other pneumonia detection schemes are proposed utilizing a small amount of COVID-19 chest X-rays. ⋯ Extensive experimentations using two different datasets provide very satisfactory detection performance with accuracy of 97.4% for COVID/Normal, 96.9% for COVID/Viral pneumonia, 94.7% for COVID/Bacterial pneumonia, and 90.2% for multiclass COVID/normal/Viral/Bacterial pneumonias. Hence, the proposed schemes can serve as an efficient tool in the current state of COVID-19 pandemic. All the architectures are made publicly available at: https://github.com/Perceptron21/CovXNet.
-
SARS-CoV and SARS-CoV-2 do not appear to have functions of a hemagglutinin and neuraminidase. This is a mystery, because sugar binding activities appear essential to many other viruses including influenza and even most other coronaviruses in order to bind to and escape from the glycans (sugars, oligosaccharides or polysaccharides) characteristic of cell surfaces and saliva and mucin. The S1 N terminal Domains (S1-NTD) of the spike protein, largely responsible for the bulk of the characteristic knobs at the end of the spikes of SARS-CoV and SARS-CoV-2, are here predicted to be "hiding" sites for recognizing and binding glycans containing sialic acid. ⋯ It might even open up the possibility of an alternative receptor to ACE2. The prediction method developed, which uses amino acid residue sequence alone to predict domains or proteins that bind to sialic acids, is naïve, and will be advanced in future work. Nonetheless, it was surprising that such a very simple approach was so useful, and it can easily be reproduced in a very few lines of computer program to help make quick comparisons between SARS-CoV-2 sequences and to consider the effects of viral mutations.