Computers in biology and medicine
-
SARS-CoV and SARS-CoV-2 do not appear to have functions of a hemagglutinin and neuraminidase. This is a mystery, because sugar binding activities appear essential to many other viruses including influenza and even most other coronaviruses in order to bind to and escape from the glycans (sugars, oligosaccharides or polysaccharides) characteristic of cell surfaces and saliva and mucin. The S1 N terminal Domains (S1-NTD) of the spike protein, largely responsible for the bulk of the characteristic knobs at the end of the spikes of SARS-CoV and SARS-CoV-2, are here predicted to be "hiding" sites for recognizing and binding glycans containing sialic acid. ⋯ It might even open up the possibility of an alternative receptor to ACE2. The prediction method developed, which uses amino acid residue sequence alone to predict domains or proteins that bind to sialic acids, is naïve, and will be advanced in future work. Nonetheless, it was surprising that such a very simple approach was so useful, and it can easily be reproduced in a very few lines of computer program to help make quick comparisons between SARS-CoV-2 sequences and to consider the effects of viral mutations.
-
This paper continues a recent study of the spike protein sequence of the COVID-19 virus (SARS-CoV-2). It is also in part an introductory review to relevant computational techniques for tackling viral threats, using COVID-19 as an example. Q-UEL tools for facilitating access to knowledge and bioinformatics tools were again used for efficiency, but the focus in this paper is even more on the virus. ⋯ However compounds like emodin that inhibit SARS entry, apparently by binding ACE2, might also have functions at several different human protein binding sites. The enzyme 11β-hydroxysteroid dehydrogenase type 1 is again argued to be a convenient model pharmacophore perhaps representing an ensemble of targets, and it is noted that it occurs both in lung and alimentary tract. Perhaps it benefits the virus to block an inflammatory response by inhibiting the dehydrogenase, but a fairly complex web involves several possible targets.
-
Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. ⋯ Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.
-
Predicting hypotension well in advance provides physicians with enough time to respond with proper therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is a challenge. This is due to the dynamic changes in patients' physiological status following drug administration, which limits the quantity of useful data available for the algorithm. ⋯ This study demonstrates the promising potential of machine-learning algorithms in the real-time prediction of hypotensive events in ICU settings based on short-term physiological history.
-
Clinical Trial
Use of automated fetal heart rate analysis to identify risk factors for umbilical cord acidosis at birth.
To identify clinical parameters and intrapartum fetal heart rate parameters associated with a risk of umbilical cord acidosis at birth, using an automated analysis method based on empirical mode decomposition. ⋯ In addition to clinical predictors, the automated FHR analysis highlighted other significant predictors, such as the baseline range, the instability of the FHR signal and the late deceleration area. This study further extends the routine application of automated FHR analysis during labor and, ultimately, contributes to the development of predictive scores for fetal acidosis.