European journal of pharmacology
-
Comparative Study
Comparison of TRPA1-versus TRPV1-mediated cough in guinea pigs.
TRPA1 receptor is activated by endogenous inflammatory mediators and exogenous pollutant molecules relevant to respiratory diseases. Previous studies have implicated TRPA1 as a drug target for antitussive therapy. Here we evaluated the relative efficacy of TRPA1 activation to evoke cough. ⋯ Another TRPA1 agonist, cinnamaldehyde, was approximately twofold more effective than AITC in inducing cough. However, the cinnamaldehyde (10mM)-induced cough was only partially inhibited by the TRPA1 antagonist AP-18, and was abolished by combination of AP-18 and the TRPV1 antagonist I-RTX. We conclude that in naïve guinea pigs, TRPA1 activation initiates cough that is relatively modest compared to the cough initiated by TRPV1, likely due to lower efficacy of TRPA1 stimulation to induce sustained activation of airway C-fibers.
-
Acute renal injury is one of the most frequent complications after cardiopulmonary bypass (CPB). This study was designed to evaluate the potential protective effect of erythropoietin (EPO) on CPB-induced renal injury in a rat model. Male Sprague-Dawley rats were randomly divided into three groups, sham-operated group (sham), control CPB group (control), erythropoietin CPB group (EPO). ⋯ Furthermore, NF-κB p65, ICAM-1 protein and mRNA expression were significantly down-regulated in EPO group comparing with control group. In addition, microscopic examinations revealed that histological injury was alleviated when treated with EPO. The results indicated that EPO potently protected against CPB-induced acute renal injury and inhibited expression of NF-κB p65 and inflammatory response.
-
General anaesthetics have been hypothesised to ablate consciousness by decoupling intracortical neural connectivity. We explored this by investigating the effect of etomidate and ketamine on coupling of neural population activity using the low magnesium neocortical slice model. Four extracellular electrodes (50 μm) were positioned in mouse neocortical slices (400 μm thick) with varying separation. ⋯ At 4mm separation, decoupling was observed in 50% and 42% of slices during etomidate and ketamine delivery, respectively (P<0.0001 and P=0.002, compared to 0.2 mm separation). A lower rate of decoupling was observed with 1mm separation (21% and 8%, respectively, P<0.03 for etomidate compared to 0.2mm separation). The data support the hypothesis that mechanistically diverse general anaesthetics disrupt neuronal connectivity across widely distributed intracortical networks.
-
Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis has been reported to have anti-inflammatory properties. The purpose of this study was to evaluate the effect of magnolol on acute lung injury induced by lipopolysaccharide in mice. Male BALB/c mice were pretreated with dexamethasone or magnolol 1 h before intranasal instillation of lipopolysaccharide (LPS). 7 h after LPS administration, the myeloperoxidase in lung tissues, lung wet/dry weight ratio and inflammatory cells in the bronchoalveolar lavage fluid were determined. ⋯ The results showed that magnolol markedly attenuated the histological alterations in the lung; reduced the number of total cells, neutrophils, and macrophages in the bronchoalveolar lavage fluid; decreased the wet/dry weight ratio of lungs in the bronchoalveolar lavage fluid; down-regulated the level of pro-inflammatory mediators, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. Taken together, our results suggest that anti-inflammatory effects of magnolol against the LPS-induced acute lung injury may be due to its ability of inhibition TLR4 mediated NF-κB signaling pathways. Magnolol may be a promising potential therapeutic reagent for acute lung injury treatment.
-
Activation of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) channels on capsaicin-sensitive sensory neurons causes release of inflammatory neuropeptides, including calcitonin gene-related peptide (CGRP). We investigated whether the hydrogen sulphide (H(2)S)-evoked CGRP release from sensory neurons of isolated rat tracheae and H(2)S-induced increases in the microcirculation of the mouse ear were mediated by TRPA1 receptor activation. Allylisothiocyanate (AITC) or the H(2)S donor sodium hydrogen sulphide (NaHS) were used as stimuli and CGRP release of the rat tracheae was measured by radioimmunoassay. ⋯ We conclude that H(2)S activates TRPA1 receptors causing CGRP release from sensory nerves of rat tracheae, as well as inducing cutaneous vasodilatation in the mouse ear. TRPV1 receptors were not involved in these processes. Our results highlight that TRPA1 receptor activation should be considered as a potential mechanism of vasoactive effects of H(2)S.