Military medicine
-
Hydrazines are highly toxic inorganic liquids that are used as propellants in military and aviation industries, such as the U.S. Air Force F-16 Emergency Power Unit and SpaceX SuperDraco Rockets. The most commonly used derivatives include hydrazine, monomethylhydrazine, and 1,1-dimethylhydrazine (unsymmetrical dimethylhydrazine). Industrial workers in close contact with hydrazines during routine maintenance tasks can be exposed to levels well above the National Institute for Occupational Safety and Health relative exposure limits. ⋯ Exposure to small amounts of hydrazine and its derivatives can cause significant soft tissue injury, pulmonary injury, seizures, coma, and death. Neurologic presentations can vary based on exposure compound and dose. Decontamination is critical as treatment is mainly supportive. High-dose intravenous pyridoxine has been suggested as treatment for hydrazine-related neurologic toxicity, but this recommendation is based on limited human data. Despite recent research efforts to generate less toxic alternatives to hydrazine fuel, it will likely continue to have a role in military and aviation industries. Aerospace and military physicians should be aware of the toxicity associated with hydrazine exposure and be prepared to treat hydrazine toxicity in at-risk populations.
-
Respiratory tract infections (RTI), such as those caused by influenza viruses and, more recently, the severe acute respiratory syndrome coronavirus-2, pose a significant burden to military health care systems and force readiness. The gut microbiota influences immune function, is malleable, and may provide a target for interventions aiming to reduce RTI burden. This narrative review summarizes existing evidence regarding the effectiveness of probiotics, prebiotics, and synbiotics, all of which are gut microbiota-targeted interventions, for reducing the burden of RTI in military-relevant populations (i.e., healthy non-elderly adults). ⋯ Dietary supplementation with certain gut microbiota-targeted interventions, and certain probiotics in particular, may provide viable strategies for reducing RTI-related illness in military personnel. Research in military populations is warranted to fully understand the magnitude of any military health and cost benefits, and to establish definitive recommendations for use.