The Journal of immunology : official journal of the American Association of Immunologists
-
The alternative activation of M2 macrophages in the lungs has been implicated as a causative agent in pulmonary fibrosis; however, the mechanisms underlying M2 polarization are poorly characterized. In this study, we investigated the role of the ubiquitously expressed Src homology domain-containing tyrosine phosphatase Shp2 in this process. Shp2 inactivation augmented IL-4-mediated M2 polarization in vitro, suggesting that Shp2 regulates macrophage skewing and prevents a bias toward the M2 phenotype. ⋯ Furthermore, mutants were more sensitive than control mice to bleomycin-induced inflammation and pulmonary fibrosis. Shp2 was associated with IL-4Rα and inhibited JAK1/STAT6 signaling through its phosphatase activity; loss of Shp2 promoted the association of JAK1 with IL-4Rα, which enhanced IL-4-mediated JAK1/STAT6 activation that resulted in M2 skewing. Taken together, these findings define a role for Shp2 in alveolar macrophages and reveal that Shp2 is required to inhibit the progression of M2-associated pulmonary fibrosis.
-
Cigarette smoke has a broad impact on the mucosal environment with the ability to alter host defense mechanisms. Within the context of a bacterial infection, this altered host response is often accompanied by exacerbated cellular inflammation, characterized by increased neutrophilia. The current study investigated the mechanisms of neutrophil recruitment in a murine model of cigarette smoke exposure and, subsequently, a model of both cigarette smoke exposure and bacterial infection. ⋯ Mice exposed to cigarette smoke elaborated an exacerbated CXCR2-dependent neutrophilia in response to nontypeable Haemophilus influenzae. Exacerbated neutrophilia was dependent on IL-1α priming of the pulmonary environment by cigarette smoke as exaggerated neutrophilia was dependent on IL-1 signaling. These data characterize a novel mechanism of cigarette smoke priming the lung mucosa toward greater IL-1-driven neutrophilic responses to bacteria, with a central role for the alveolar macrophage in this process.
-
Multicenter Study Clinical Trial
IFN-α exerts opposing effects on activation-induced and IL-7-induced proliferation of T cells that may impair homeostatic maintenance of CD4+ T cell numbers in treated HIV infection.
To determine whether IFN-α is a cause of the T cell hyperactivation and IL-7 signaling pathway defects that are observed in some HIV patients receiving antiretroviral therapy, we have investigated the effect of IFN-α on the proliferation of CD4(+) and CD8(+) T cells from healthy donors (n = 30) and treated HIV(+) donors (n = 20). PBMC were cultured for 7 d with staphylococcal enterotoxin B or IL-7 in the absence or presence of 100 U/ml IFN-α8. Total and naive CD4(+) and CD8(+) T cells were assessed for proliferation (via Ki67 expression), CD127 expression, and phosphorylated STAT5 levels using flow cytometry. ⋯ CD127 expression was increased in both healthy and HIV(+) donors following culture with IFN-α8, and levels of IL-7-induced phosphorylated STAT5 were increased by IFN-α8 in healthy donors only. Hence, the inhibitory effects of IFN-α on IL-7-induced proliferation of CD4(+) T cells are unlikely to be mediated by downregulation of CD127 expression or inhibition of STAT5 phosphorylation. These data suggest that increased IFN-α activity may promote the loss of T cells by accelerating cell turnover and activation-induced cell death while decreasing the renewal of T cells by inhibiting the proliferative effect of IL-7.
-
The long pentraxin 3 (PTX3) modulates different effector pathways involved in innate resistance to Aspergillus fumigatus, including complement activation or promotion of phagocytosis by interacting with FcγRs. However, whether and how TLRs modulate PTX3 mediates antifungal resistance is not known. In this study, we demonstrate that PTX3 binds myeloid differentiation protein 2 (MD-2) in vitro and exerts its protective antifungal activity in vivo through TLR4/MD-2-mediated signaling. ⋯ Treating Md2(-/-) mice with PTX3 failed to confer immune protection against the fungus, whereas adoptive transfer of MD-2-competent polymorphonuclear neutrophils restored it. Mechanistically, engagement of MD-2 by PTX3-opsonized Aspergillus conidia activated the TLR4/Toll/IL-1R domain-containing adapter inducing IFN-β-dependent signaling pathway converging on IL-10. Thus, we have identified a novel receptor mechanism, involving the TLR4/MD-2/Toll/IL-1R domain-containing adapter inducing IFN-β-mediated signaling, whereby PTX3 elicits antifungal resistance with limited immunopathology in A. fumigatus infection.