The Journal of biological chemistry
-
MicroRNAs (miRNAs) regulate mRNA stability and translation through the action of the RNAi-induced silencing complex. In this study, we systematically identified endogenous miRNA target genes by using AGO2 immunoprecipitation (AGO2-IP) and microarray analyses in two breast cancer cell lines, MCF7 and MDA-MB-231, representing luminal and basal-like breast cancer, respectively. The expression levels of ∼70% of the AGO2-IP mRNAs were increased by DROSHA or DICER1 knockdown. ⋯ We demonstrated that DROSHA knockdown enhanced cell migration and invasion, whereas it sensitized cells to cell death induced by suspension culture, glucose depletion, and unfolding protein stress. Data from an orthotopic xenograft model showed that DROSHA knockdown resulted in reduced growth of primary tumors but enhanced lung metastasis. Taken together, these results suggest that miRNAs collectively function to promote survival of tumor cells under stress but suppress cell migration/invasion in breast cancer cells.
-
The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate the role of the DAT C terminus in AMPH-evoked DA efflux using cell-permeant dominant-negative peptides. ⋯ This was further supported by the ability of a peptide with perturbed PDZ-binding sequence, but preserved CaMKIIα binding (TAT-C24AAA), to diminish AMPH-evoked DA efflux in vivo to the same extent as TAT-C24WT. Finally, AMPH-induced locomotor hyperactivity was attenuated following systemic administration of TAT-C24WT but not TAT-C24Scr. Summarized, our findings substantiate that DAT C-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects.
-
Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. ⋯ Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.
-
Living organisms possess biological clocks that resonate with environmental cycles in light, temperature, and food availability. Recently, circadian oscillations in the redox state of peroxiredoxin have been described as an additional non-transcriptional timekeeping mechanism. ⋯ How the classical "transcription-translation feedback loop" model and this redox oscillation are related is still poorly understood. In this minireview, we describe the most recent evidence pointing to cross-talk between the circadian clock and the redox status of the cell.
-
NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. ⋯ By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.