The Journal of biological chemistry
-
Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. ⋯ Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.
-
Living organisms possess biological clocks that resonate with environmental cycles in light, temperature, and food availability. Recently, circadian oscillations in the redox state of peroxiredoxin have been described as an additional non-transcriptional timekeeping mechanism. ⋯ How the classical "transcription-translation feedback loop" model and this redox oscillation are related is still poorly understood. In this minireview, we describe the most recent evidence pointing to cross-talk between the circadian clock and the redox status of the cell.
-
NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. ⋯ By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.
-
Idiopathic pulmonary fibrosis is a devastating lung disorder of unknown etiology. Although its pathogenesis is unclear, considerable evidence supports an important role of aberrantly activated alveolar epithelial cells (AECs), which produce a large variety of mediators, including several matrix metalloproteases (MMPs), which participate in fibroblast activation and lung remodeling. MMP-1 has been shown to be highly expressed in AECs from idiopathic pulmonary fibrosis lungs although its role is unknown. ⋯ Likewise, a significant decrease of both total and mitochondrial reactive oxygen species was observed in MMP-1-transfected cells. Paralleling these findings, attenuation of MMP-1 expression by shRNA in A549 (human) AECs markedly reduced proliferation and migration (p < 0.01) and increased the oxygen consumption ratio. These findings indicate that epithelial expression of MMP-1 inhibits mitochondrial function, increases HIF-1α expression, decreases reactive oxygen species production, and contributes to a proliferative, migratory, and anti-apoptotic AEC phenotype.
-
Abnormal proliferation and phenotypic modulation of pulmonary artery smooth muscle cells (PASMC) contributes to the pathogenesis of numerous cardiovascular disorders, including pulmonary arterial hypertension (PAH). The nuclear factor of activated T cells (NFAT) signaling pathway is linked to PASMC proliferation and PAH. MicroRNAs (miRNAs) are small non-coding RNAs that function in diverse biological processes. ⋯ Furthermore, the overexpression of miR-124 not only inhibited human PASMC proliferation but also maintained its differentiated phenotype by repressing the NFAT pathway. Taken together, our data provide the first evidence that miR-124 acts as an inhibitor of the NFAT pathway. Down-regulation of miR-124 in hypoxia-treated PASMC and its antiproliferative and prodifferentiation effects imply a potential value for miR-124 in the treatment of PAH.