Journal of neurochemistry
-
Journal of neurochemistry · Nov 2004
Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures.
To date, glutathione (GSH) depletion is the earliest biochemical alteration shown in brains of Parkinson's disease patients, but the role of GSH in dopamine cell survival is debated. In this study we show that GSH depletion, produced with GSH synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO), induces selectively neuronal cell death in neuron/glia, but not in neuronal-enriched midbrain cultures and that cell death occurs with characteristics of necrosis and apoptosis. BSO produces a dose- and time-dependent generation of reactive oxygen species (ROS) in neurons. ⋯ However, blockade of microglial activation with minocycline did not. Our results indicate that neuronal death induced by GSH depletion is due to ROS-dependent activation of the ERK-1/2 signalling pathway in glial cells. These data may be of relevance in Parkinson's disease, where GSH depletion and glial dysfunction have been documented.
-
Journal of neurochemistry · Sep 2004
Comparative StudyPARP-1 gene disruption in mice preferentially protects males from perinatal brain injury.
Poly(ADP-ribose) polymerase-1 is over-activated in the adult brain in response to ischemia and contributes to neuronal death, but its role in perinatal brain injury remains uncertain. To address this issue, 7-day-old wild-type (wt) and PARP-1 gene deficient (parp+/- and parp-/-) Sv129/CD-1 hybrid mice were subjected to unilateral hypoxia-ischemia and histologic damage was assessed 10 days later by two evaluators. ⋯ Brain levels of NAD+ were also significantly reduced, but the decrease of NAD+ during the early post-hypoxia-ischemia (HI) phase was only seen in males. The results indicate that hypoxia-ischemia activates Poly(ADP-ribose) polymerase-1 in the neonatal brain and that the sex of the animal strongly influences its role in the pathogenesis of brain injury.
-
Journal of neurochemistry · Sep 2004
Comparative StudyAn anti-CD11d integrin antibody reduces cyclooxygenase-2 expression and protein and DNA oxidation after spinal cord injury in rats.
Our studies have shown that treatment with a monoclonal antibody (mAb) against the CD11d subunit of the leukocyte integrin CD11d/CD18 after spinal cord injury (SCI) decreases intraspinal inflammation, myeloperoxidase activity, lipid peroxidation and protein nitration, improving neurological function in rats. Using severe clip compression SCI in the rat, immunohistochemistry and western blotting were employed to assess the effects of an anti-CD11d mAb treatment on spinal cord cyclooxygenase-2 (COX-2) expression, formation of 8-hydroxy-2-deoxyguanosine (8-OHdG, a marker of RNA and DNA oxidation) and protein carbonylation (a marker of protein oxidation). We also assessed treatment effects on the expression of apurinic/apyrimidinic endonuclease (redox effector factor-1, APE/Ref-1), a multifunctional enzyme involved in the base excision repair of apurinic/apyrimidinic sites in DNA. ⋯ Anti-CD11d mAb treatment clearly attenuated COX-2 expression and 8-OHdG and protein carbonyl formation and rescued APE/Ref-1 expression after SCI. This study suggests that anti-CD11d mAb treatment significantly reduces intraspinal free radical formation after SCI, thereby reducing protein and DNA oxidative damage. These effects likely underlie tissue preservation and improved neurological function resulting from the mAb treatment.
-
Journal of neurochemistry · Aug 2004
Effects of post-injury hypothermia and nerve growth factor infusion on antioxidant enzyme activity in the rat: implications for clinical therapies.
The pathological sequelae of traumatic brain injury (TBI) include increased oxidative stress due to the production of reactive oxygen species (ROS). Regulation of ROS levels following TBI is determined primarily by antioxidant enzyme activity that in turn can be influenced by nerve growth factor (NGF). Hypothermia is one of the current therapies designed to combat the deleterious effects of TBI. ⋯ Relative to levels in injured, normothermic animals, hypothermia treatment not only suppressed NGF levels, but also attenuated CAT and GPx activity, and increased SOD activity. Infusion of NGF in injured, hypothermia-treated animals was ineffective in restoring hippocampal antioxidant enzymes activity to levels produced after injury under normothermic conditions, although it was able to increase septal cholinergic (choline acetyltransferase) enzyme activity. These results have implications for clinical treatment of TBI, demonstrating that moderate hypothermia suppresses NGF and the antioxidant response after TBI; the latter cannot be countered by exogenous NGF administration.
-
Journal of neurochemistry · Aug 2004
Effects of repeated cocaine on medial prefrontal cortical GABAB receptor modulation of neurotransmission in the mesocorticolimbic dopamine system.
Increased excitatory output from medial prefrontal cortex is an important component in the development of cocaine sensitization. Activation of GABAergic systems in the prefrontal cortex can decrease glutamatergic activity. A recent study suggested that sensitization might be associated with a decrease in GABAB receptor responsiveness in the medial prefrontal cortex. ⋯ Baclofen minimally affected glutamate levels in the medial prefrontal cortex, nucleus accumbens or ventral tegmental area of control animals, but dose-dependently increased glutamate levels in each of these regions in animals sensitized to cocaine. This effect was not the result of changes in GABAB receptor-mediated modulation of dopamine or GABA in the medial prefrontal cortex. The data suggest that alterations in GABAB receptor modulation of medial prefrontal cortical excitatory output may play an important role in the development of sensitization to cocaine.