Philosophical transactions of the Royal Society of London. Series B, Biological sciences
-
Philos. Trans. R. Soc. Lond., B, Biol. Sci. · Jun 1997
ReviewMeasurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy.
Cytochrome oxidase is the terminal electron acceptor of the mitochondrial respiratory chain. It is responsible for the vast majority of oxygen consumption in the body and essential for the efficient generation of cellular ATP. The enzyme contains four redox active metal centres; one of these, the binuclear CuA centre, has a strong absorbance in the near-infrared that enables it to be detectable in vivo by near-infrared spectroscopy. ⋯ We applaud these attempts, which in general fall into three areas: first, modelling of data can be performed to determine what problems are likely to derail cytochrome oxidase detection algorithms (Matcher et al. 1995); secondly haemoglobin concentration changes can be made by haemodilution (using saline or artificial blood substitutes) in animals (Tamura 1993) or patients (Skov & Greisen 1994); and thirdly, the cytochrome oxidase redox state can be fixed by the use of mitochondrial inhibitors and then attempts make to cause spurious cytochrome changes by dramatically varying haemoglobin oxygenation, haemoglobin concentration and light scattering (Cooper et al. 1997). We have previously written reviews covering the difficulties of measuring the cytochrome near-infrared spectroscopy signal in vivo (Cooper et al. 1997) and the factors affecting the oxidation state of cytochrome oxidase CuA (Cooper et al. 1994). In this article we would like to strike a somewhat more optimistic note--we will stress the usefulness this measurement may have in the clinical environment, as well as describing conditions under which we can have confidence that we are measuring real changes in the CuA redox state.
-
Philos. Trans. R. Soc. Lond., B, Biol. Sci. · Jun 1997
Measurements of tissue viability in transplantation.
Near-infrared spectroscopy has primarily been used in monitoring changes in cerebral haemoglobin oxygenation and haemodynamics. However its use as a method for the assessment of tissue viability following transplantation has recently been explored experimentally in our laboratory. The ability to measure changes in oxygenation and perfusion during harvesting and following transplantation of organs or transfer of free and pedicled flaps potentially important in reconstructive surgery. ⋯ Cerebral near-infrared spectroscopy measurements in a liver transplant model showed statistically significant differences within minutes after the anhepatic phase in cerebral perfusion and oxygenation, between animals transplanted with ischaemically damaged livers compared to those isografted with minimally stored livers. Similarly we have found that near-infrared spectroscopy can be used as a monitor to assess the adequacy of fluid or blood replacement in haemorrhagic and hypovolaemic models. We believe that near-infrared spectroscopy provides a sensitive and reliable postoperative method for the assessment of tissue viability following the transfer of free and pedicled flaps and organs.