Pain
-
Painful neuropathy is a common complication of diabetes. Particularly in the early stage of diabetic neuropathy, patients are characterized by burning feet, hyperalgesia to heat, and mechanical stimuli, as if residual nociceptors were sensitized. Such symptoms are barely explained by common pathophysiological concepts of diabetic neuropathy. ⋯ Diabetic C-fibers show exaggerated sensitivity to hyperglycemic hypoxia with and without additional acidosis, conditions that are thought to mimic ischemic episodes in diabetic nerves. Ongoing C-fiber discharge is known to induce spinal sensitization. Together with altered receptor and ion channel expressions this may contribute to painful episodes in diabetic neuropathy.
-
Chronic itch is a symptom of many skin conditions and systemic disease, and it has been hypothesized that the chronic itch may result from sensitization of itch-signaling pathways. We induced experimental chronic dry skin on the rostral back of mice, and observed a significant increase in spontaneous hindlimb scratches directed to the dry skin. Spontaneous scratching was significantly attenuated by a PAR-2 antibody and 5-HT2A receptor antagonist, indicating activation of these receptors by endogenous mediators released under dry skin conditions. ⋯ DRG cells from dry skin mice exhibited significantly larger responses to the PAR-2 agonist and 5-HT, but not histamine. Spontaneous scratching may reflect ongoing itch, and enhanced pruritogen-evoked scratching may represent hyperknesis (enhanced itch), both potentially due to sensitization of itch-signaling neurons. The correspondence between enhanced behavioral scratching and DRG cell responses suggest that peripheral pruriceptors that respond to proteases and 5-HT, but not histamine, may be sensitized in dry skin itch.
-
Excessive cervical facet capsular ligament stretch has been implicated as a cause of whiplash-associated disorders following rear-end impacts, but the pathophysiological mechanisms that produce chronic pain in these cases remain unclear. Using a rat model of C6-C7 cervical facet joint capsule stretch that produces sustained mechanical hyperalgesia, the presence of neuronal hyperexcitability was characterized 7 days after joint loading. Extracellular recordings of spinal dorsal horn neuronal activity between C6 and C8 (117 neurons) were obtained from anesthetized rats, with both painful and non-painful behavioral outcomes established by the magnitude of capsule stretch. ⋯ The proportion of cells in the deep laminae that responded as wide dynamic range neurons also was increased in the painful group relative to non-painful or sham groups (p<0.0348). These findings suggest that excessive facet capsule stretch, while not producing visible tearing, can produce functional plasticity of dorsal horn neuronal activity. The increase in neuronal firing across a range of stimulus magnitudes observed at day 7 post-injury provides the first direct evidence of neuronal modulation in the spinal cord following facet joint loading, and suggests that facet-mediated chronic pain following whiplash injury is driven, at least in part, by central sensitization.
-
Through activation of the A1 adenosine receptors (A1Rs) at both the central and peripheral level, adenosine produces antinociception in a wide range of tests. However, the mechanisms involved in the peripheral effect are still not fully understood. Therefore, the mechanisms by which peripheral activation of A1Rs reduces inflammatory hypernociception (a decrease in the nociceptive threshold) were addressed in the present study. ⋯ Direct blockade of PGE(2) inflammatory hypernociception by the activation of A1Rs depends on the nitric oxide/cGMP/Protein Kinase G/KATP signaling pathway because the peripheral antinociceptive effect of CPA was prevented by pretreatment with inhibitors of neuronal nitric oxide synthase (N-propyl-l-arginine), guanylyl cyclase (ODQ), and Protein Kinase G (KT5823) as well as with a KATP blocker (glibenclamide). However, this effect of CPA was not reduced by naloxone, excluding the participation of endogenous opioids. These results suggest that the peripheral activation of A1R plays a role in the regulation of inflammatory hypernociception by a mechanism that involves the NO/cGMP/PKG/KATP intracellular signaling pathway.