Pain
-
In the past two decades, functional brain imaging has considerably advanced our knowledge of cerebral pain processing. However, many important links are still missing in our understanding of brain activity in relation to the regulation of pain-related physiological responses. This fMRI study investigates the cerebral correlates of pain (rating), motor responses (RIII-reflex) and autonomic activity (skin conductance response; SCR) evoked by noxious electrical stimulation. ⋯ Additionally, trial-to-trial fluctuations of RIII-reflex and SCR (within-subjects) were proportional to shock-evoked responses in subgenual cingulate cortex (RIII), anterior insula (SCR) and midcingulate cortex (SCR and RIII). Together, these results confirm that individual differences in perceptual, motor, and autonomic components of pain reflect robust individual differences in brain activity. Furthermore, the brain correlates of trial-to-trial fluctuations in pain responses provide additional evidence for a partial segregation of sub-systems involved more specifically in the ongoing monitoring, and possibly the regulation, of pain-related motor and autonomic responses.
-
Pain is the dominant symptom in osteoarthritis (OA) and sensitization may contribute to the pain severity. This study investigated the role of sensitization in patients with painful knee OA by measuring (1) pressure pain thresholds (PPTs); (2) spreading sensitization; (3) temporal summation to repeated pressure pain stimulation; (4) pain responses after intramuscular hypertonic saline; and (5) pressure pain modulation by heterotopic descending noxious inhibitory control (DNIC). Forty-eight patients with different degrees of knee OA and twenty-four age- and sex-matched control subjects participated. ⋯ No correlations were found between standard radiological findings and clinical/experimental pain parameters. However, patients with lesions in the lateral tibiofemoral knee compartment had higher pain ratings compared with those with intercondylar and medial lesions. This study highlights the importance of central sensitization as an important manifestation in knee OA.
-
Knowledge of the position of one's limbs is an essential component of daily function and relies on complex interactions of sensorimotor body schema-related information. Those with Complex Regional Pain Syndrome (CRPS) express difficulty in knowing where their affected limb is positioned. The aim of this study was to determine the degree to which experimental data supported the reported difficulty in limb position sense. ⋯ Evidence of bilateral arm positioning impairments in unilateral arm CRPS suggests that central mechanisms are involved. Cortical reorganisation in regions associated with the body schema (i.e. primary somatosensory and parietal cortices) is proposed as an explanation. The exact relationship between pain and limb position deficits requires further exploration.
-
Pro-inflammatory cytokine high mobility group box-1 (HMGB-1) is involved in inflammation in the central nervous system, but less is known about its biological effects in the peripheral nervous system. In the present study, the role of HMGB-1 in the primary afferent nerve was investigated in the context of the pathophysiology of peripheral nerve injury-induced pain hypersensitivity. Real-time PCR confirmed an increase in HMGB-1 mRNA expression in the dorsal root ganglion (DRG) and spinal nerve at 1 day after spinal nerve ligation (SNL). ⋯ Receptor for advanced glycation end products (RAGE), one of the major receptors for HMGB-1, was expressed in the primary afferent neurons and SGCs in the DRG, as well as in Schwann cells in the spinal nerve. These results indicate that HMGB-1 is synthesized and secreted into the DRG and spinal nerve, and contributes to the development of neuropathic pain after nerve injury. Blocking HMGB-1/RAGE signalling might thus be a promising therapeutic strategy for the management of neuropathic pain.