Pain
-
Cold allodynia is a common sign of neuropathic pain patients but its underlying mechanisms are still largely unknown, partly because the populations of neurons responding to cold stimuli and their transduction mechanisms have not been fully determined. We report a patient with a small-fiber neuropathy of unknown origin, whose main complaint is cold allodynia. ⋯ These findings provide the first direct evidence in human of abnormal peripheral nociceptor behavior potentially responsible for cold allodynia. The responsiveness of C-nociceptors to menthol suggests an abnormal expression or function of TRPM8 channels in this patient with a small-fiber polyneuropathy.
-
In adult patients with migraine, transcranial magnetic stimulation (TMS) has been used to examine cortical excitability between attacks, but there have been discrepant results. No TMS study has examined cortical excitability in children or adolescents with migraine. Here, we employed TMS to study regional excitability of the occipital (phosphene threshold [PT] and suppression of visual perception) and motor (resting motor threshold and cortical silent period) cortex in ten children suffering from migraine without aura and ten healthy age-matched controls. ⋯ Motor cortex excitability was not altered in patients and did not change during the migraine cycle. These findings show that pediatric migraine without aura is associated with a systematic shift in occipital excitability preceding the migraine attack. Similar systematic fluctuations in cortical excitability might be present in adult migraineurs and may reflect either a protective mechanism or an abnormal decrease in cortical excitability that predisposes an individual to a migraine attack.
-
The aim of the present study was to examine the role of the spinal serotonergic system in the pain relieving effect of spinal cord stimulation (SCS) using a rat model of mononeuropathy. Tactile withdrawal thresholds, cold responses and heat withdrawal latencies were assessed before and after SCS. In some rats, SCS produced an attenuation of the hypersensitivity following nerve injury (SCS responding rats). ⋯ It was also found that i.t. administration of a sub-effective dose of serotonin in SCS non-responding rats markedly enhanced the pain relieving effect of SCS on tactile and cold hypersensitivity, while there was no effect on heat hyperalgesia. This enhanced effect on tactile hypersensitivity could be partially blocked by a GABA(B) receptor antagonist (CGP 35348) but not by a muscarinic M(4) receptor antagonist (Muscarinic toxin 3) administered i.t. shortly before the 5-HT injection. In conclusion, there is evidence that the spinal 5-HT system plays an important role in the mode of action of SCS involving the activation of descending serotonergic pathways that may inhibit spinal nociceptive processing partially via a GABAergic link.
-
Oxaliplatin is a key drug in the treatment of advanced metastatic colorectal cancer, but it causes acute peripheral neuropathy (acral paresthesias triggered by exposure to cold) and chronic neuropathy (abnormal of sensory and motor dysfunction). Oxaliplatin is metabolized to oxalate and dichloro(1,2-diaminocyclohexane)platinum (Pt(dach)Cl(2)). Although the chelating of Ca(2+) with oxalate eliminated from oxaliplatin is thought as one of the reasons for the neuropathy, there is little behavioral evidence. ⋯ The pre-administration of calcium or magnesium (0.5mmol/kg, i.v.) before oxaliplatin or oxalate prevented the cold hyperalgesia but not mechanical allodynia. However, the treatment with calcium or magnesium after the development of neuropathy could not attenuate the cold hyperalgesia or mechanical allodynia. These findings suggest the involvement of oxalate in oxaliplatin-induced cold hyperalgesia but not mechanical allodynia, and usefulness of prophylactic treatments with calcium and magnesium on the acute peripheral neuropathy.
-
Metabotropic glutamate (mGlu) receptors, which are present on neurons and glial cells, have been shown to play a role in neuropathic pain. The present study sought to investigate how the glial inhibitors minocycline and pentoxifylline alter the effect that chronic constriction injury (CCI) has on the expression of mGlu receptors and on their associated ligands. RT-PCR analysis revealed that seven days after CCI, the mRNA levels of glial markers C1q and GFAP, as well as those of mGlu5 and mGlu3, but not mGlu7, were elevated in the lumbar spinal cord - ipsilateral to the injury. ⋯ Preemptive and repeated intraperitoneal (i.p.) administration (16 and 1h before nerve injury and then twice daily for seven days) of minocycline (30mg/kg) and pentoxifylline (20mg/kg) prevented the injury-induced changes in the levels of mGlu3 and mGlu5 receptor mRNAs and the injury-induced changes in the protein levels of all the receptors. Repeated administration of minocycline and pentoxifylline significantly attenuated CCI-induced allodynia (von Frey test) and hyperalgesia (cold plate test) measured on day seven after injury and potentiated the antiallodynic and antihyperalgesic effects of single i.p. and intrathecal (i.t.) injections of mGlu receptor ligands: MPEP, LY379268 or AMN082. We conclude that attenuation of injury-induced glial activation can reduce glutamatergic activity, thereby contributing to regulation of pain sensation.