Pain
-
Observational Study
Region-specific changes in brain glutamate and gamma-aminobutyric acid across the migraine attack in children and adolescents.
In patients with migraine, an excitation-inhibition imbalance that fluctuates relative to attack onset has been proposed to contribute to the underlying pathophysiology of migraine, but this has yet to be explored in children and adolescents. This prospective, observational, cohort study examined glutamate and gamma-aminobutyric acid (GABA) levels across the phases of a migraine attack and interictally in children and adolescents using magnetic resonance spectroscopy. Macromolecule-suppressed GABA (sensorimotor cortex and thalamus) and glutamate (occipital cortex, sensorimotor cortex, and thalamus) were measured in children and adolescents (10-17 years) with a migraine diagnosis with or without aura 4 times over 2 weeks. ⋯ In the 24 hours post headache onset, sensorimotor glutamate continued to decrease. Our results suggest changes in glutamate and GABA that are consistent with the thalamocortical dysrhythmia hypothesis. These findings provide insight into developmental migraine pathophysiology and may open future avenues for treatment targets specific to children and adolescents.
-
Patients with temporomandibular disorders (TMDs) typically experience facial pain and discomfort or tenderness in the temporomandibular joint (TMJ), causing disability in daily life. Unfortunately, existing treatments for TMD are not always effective, creating a need for more advanced, mechanism-based therapies. In this study, we used in vivo GCaMP3 Ca 2+ imaging of intact trigeminal ganglia (TG) to characterize functional activity of the TG neurons in vivo, specifically in mouse models of TMJ injury and inflammation. ⋯ In addition, we confirmed the attenuating effect of calcitonin gene-related peptide antagonist on FMO-induced sensitization by in vivo GCaMP3 Ca 2+ imaging of intact TG. Our results contribute to unraveling the role and activity of TG neurons in the TMJ pain, bringing us closer to understanding the pathophysiological processes underlying TMJ pain after TMJ injury. Our study also illustrates the utility of in vivo GCaMP3 Ca 2+ imaging of intact TG for studies aimed at developing more targeted and effective treatments for TMJ pain.
-
Pain-related motor adaptations may be enacted predictively at the mere threat of pain, before pain occurrence. Yet, in humans, the neurophysiological mechanisms underlying motor adaptations in anticipation of pain remain poorly understood. We tracked the evolution of changes in corticospinal excitability (CSE) as healthy adults learned to anticipate the occurrence of lateralized, muscle-specific pain to the upper limb. ⋯ Finally, stronger corticospinal inhibition correlated with greater trait anxiety. These results advance the mechanistic understanding of pain processes showing that pain-related motor adaptations are enacted at the mere threat of pain, as sets of anticipatory, topographically organized motor changes that are associated with the expected pain and are shaped by individual anxiety levels. Including such anticipatory motor changes into models of pain may lead to new treatments for pain-related disorders.
-
Previous research suggests that individuals with mental health needs and chronic pain may be less likely to use mental health treatment compared with those with mental health needs only. Yet, few studies have investigated the existence of population-level differences in mental health treatment use. We analyzed data from the National Health Interview Survey (n = 31,997) to address this question. ⋯ Overall, our results suggest that U. S. adults with chronic pain constitute an underrecognized majority of those living with unremitted anxiety/depression symptoms and that the U. S. healthcare system is not yet adequately equipped to educate, screen, navigate to care, and successfully address their unmet mental health needs.
-
The urocortin 1 (UCN1)-expressing centrally projecting Edinger-Westphal (EWcp) nucleus is influenced by circadian rhythms, hormones, stress, and pain, all known migraine triggers. Our study investigated EWcp's potential involvement in migraine. Using RNAscope in situ hybridization and immunostaining, we examined the expression of calcitonin gene-related peptide (CGRP) receptor components in both mouse and human EWcp and dorsal raphe nucleus (DRN). ⋯ Targeted ablation of EWcp/UCN1 neurons induced hyperalgesia. A positive functional connectivity between EW and STN as well as DRN has been identified by functional magnetic resonance imaging. The presented data strongly suggest the regulatory role of EWcp/UCN1 neurons in migraine through the STN and DRN with high translational value.