Pain
-
Cancer patients treated with antimitotic drugs in the taxane and vinca alkaloid classes sometimes develop a chronic painful peripheral neuropathy whose cause is not understood. In animal models of painful peripheral neuropathy due to nerve trauma or diabetes there is obvious axonal degeneration accompanied by an abnormal incidence of spontaneous discharge in A-fiber and C-fiber nociceptors. But animals with paclitaxel- and vincristine-evoked neuropathic pain do not have axonal degeneration at the level of the peripheral nerve. ⋯ Compared to vehicle-injected controls, we find a significant increase in spontaneously discharging A-fibers and C-fibers. Moreover, we show that prophylactic treatment with acetyl-l-carnitine (ALC), which blocks the development of the paclitaxel-evoked pain, causes a significant decrease (ca. 50%) in the incidence of A-fibers and C-fibers with spontaneous discharge. These results suggest that abnormal spontaneous afferent discharge is likely to be a factor in the pathogenesis of chemotherapy-evoked painful peripheral neuropathy, and that the therapeutic effects of ALC may be due to the suppression of this discharge.
-
Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. ⋯ Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.
-
Under physiological conditions, nociceptive information is mainly processed in superficial laminae of the spinal dorsal horn, whereas non-nociceptive information is processed in deeper laminae. Neuropathic pain patients often suffer from touch-evoked pain (allodynia), suggesting that modality borders are disrupted in their nervous system. We studied whether excitation evoked in deep dorsal horn neurons either via stimulation of primary afferent Abeta-fibres, by direct electrical stimulation or via glutamate microinjection leads to activation of neurons in the superficial dorsal horn. ⋯ Furthermore, we could show that neuropathic animals were more prone to synchronous network activity than control animals. Thus, following peripheral nerve injury, excitation generated in dorsal horn areas which process non-nociceptive information can invade superficial dorsal horn areas which normally receive nociceptive input. This may be a spinal mechanism of touch-evoked pain.
-
Although it has been shown that pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) facilitate perception of noxious inputs at the spinal level, the mechanisms have not been understood. This study determined the cell type that produces IL-1beta, the co-localization of IL-1 receptor type I (IL-1RI) and Fos and NR1 in the spinal cord, and the effects of IL-1 receptor antagonist (IL-1ra) on NR1 phosphorylation and hyperalgesia in a rat model of inflammatory pain. Phosphorylation of NR1, an essential subunit of the NMDA receptor (NMDAR), is known to modulate NMDAR activity and facilitate pain. ⋯ Spinal cords were removed for double immunostaining of IL-1beta/neuronal marker and IL-1beta/glial cell markers, IL-1RI/Fos and IL-1RI/NR1, and for Western blot to measure NR1 phosphorylation. The data showed that: (1) astrocytes produce IL-1beta, (2) IL-1RI is localized in Fos- and NR1-immunoreactive neurons within the spinal dorsal horn, and (3) IL-1ra at 0.01mg/rat significantly increased PWL (P<0.05) and inhibited NR1 phosphorylation compared to saline control. The results suggest that spinal IL-1beta is produced by astrocytes and enhances NR1 phosphorylation to facilitate inflammatory pain.
-
The transient receptor potential channel subtypes V1 (TRPV1) and A1 (TRPA1) play a critical role in the development of hyperalgesia in inflammatory pain models. Although several studies in animals and humans have demonstrated that capsaicin (CAP), a TRPV1-specific agonist, and mustard oil (MO), a TRPA1 agonist, evoke responses that undergo functional cross-desensitization in various models, the mechanisms mediating this phenomenon are largely unknown. In the present study, we evaluated the mechanisms underlying homologous and heterologous desensitization between CAP and MO responses in peripheral nociceptors using an in vitro neuropeptide release assay from acutely isolated rat hindpaw skin preparation and in vivo behavioral assessments. ⋯ Homologous and heterologous desensitization of CAP and MO was also demonstrated using in vivo behavioral nocifensive assays. Taken together, these results indicate that TRPV1 and TRPA1 could be involved in a functional interaction that is regulated via different cellular pathways. The heterologous desensitization of these receptors and corresponding inhibition of nociceptor activity might have potential application as a therapeutic target for developing novel analgesics.