Pain
-
Meta Analysis
Effect modifiers of virtual reality in pain management: a systematic review and meta-regression analysis.
There is a rapidly growing body of evidence for the application of virtual reality (VR) in pain management, however, with varying effectiveness. Little is known about patient-related and VR-related factors affecting efficacy of VR. A systematic review and meta-analysis was performed including 122 randomised controlled trials (9138 patients), reporting on subjectively reported pain scores comparing an immersive VR intervention to a non-VR control group. ⋯ Heterogeneity was considerable for all meta-analyses, and risk of bias was moderate to high in most included studies. Studies on mechanisms behind VR analgesia in younger patients and patients reporting moderate to severe pain are recommended to confirm our hypotheses while taking into account risk of bias and the comparator. Optimal application of VR using treatment modules for long-term pain conditions are an important issue for future research.
-
We developed an animal model of activity-induced muscle pain that is dependent on local macrophage activation and release of interleukin-1β (IL-1β). Activation of purinergic type 2X (P2X) 7 receptors recruits the NOD-like receptor protein (NLRP) 3 and activates Caspase-1 to release IL-1β. We hypothesized that pharmacological blockade of P2X7, NLRP3, and Caspase-1 would prevent development of activity-induced muscle pain in vivo and release of IL-1β from macrophages in vitro. ⋯ Blockade of P2X7, NLRP3, Capsase-1, or IL-1β 24 hours, but not 1 week, after induction of the model alleviated muscle hyperalgesia in male, but not female, mice. mRNA expression of P2X7, NLRP3, Caspase-1, and IL-1β from muscle was increased 24 hours after induction of the model in both male and female mice. Using multiplex, increases in IL-1β induced by combining adenosine triphosphate with pH 6.5 in lipopolysaccharide-primed male and female macrophages were significantly lower with the presence of inhibitors of P2X7 (A740003), NLRP3 (MCC950), and Caspase-1 (Z-WEHD-FMK) when compared with the vehicle. The current data suggest the P2X7/NLRP3/Caspase-1 pathway contributed to activity-induced muscle pain initiation and early maintenance phases in male but not female, and not in late maintenance phases in male mice.