Pain
-
We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of ferrets following stimulation of pulpal A delta and C fibers originating from the maxillary canine. This study evaluated the effects of the mu-opioid receptor agonist fentanyl on Fos expression evoked by noxious thermal stimulation of the right maxillary and mandibular canines in pentobarbital/chloral hydrate anesthetized adult male ferrets. Pulpal heating evoked Fos expression in two distinct regions of the spinal trigeminal nuclear complex: the transitional region between subnucleus interpolaris and caudalis (Vi/Vc) and within the subnucleus caudalis (Vc). ⋯ The administration of naloxone without heat stimulation failed to evoke Fos expression in Vi/ Vc and Vc. These findings suggest that the activation of trigeminal Vi/Vc and Vc neurons by noxious dental heat stimulation is controlled by a naloxone sensitive endogenous opioid system as indicated by Fos expression. Collectively, these results suggest that neuronal populations in Vi/Vc and Vc regions may contribute to pain responses to noxious dental stimulation and these responses can be modulated by both endogenous and exogenous opioids.
-
This essay is an attempt to clarify the construct of unpleasantness in the context of the psychophysics of pain. The first critical point is that one aspect of unpleasantness is tightly coupled to stimulus intensity and is therefore a sensory discrimination. Pain has this quality, but so do other somatic sensations such as itch and dysesthesias that are not recognized as painful by most people. ⋯ I suggest that the sensory-discriminative/affective-motivational dichotomy has outlived its usefulness and is currently more of an impediment than a guide to neurobiological explanations of pain. In order to increase our understanding of pain we need psychophysical tools designed specifically to differentiate primary unpleasantness from both algosity and secondary unpleasantness. These tools can then be used to determine the neural mechanisms of pain.
-
The aim of this study was to investigate the analgesic effects of epidural opioids upon persistent pain sensitivity in neonatal rat pups. Two models of persistent pain were used, subcutaneous injection of carrageenan, and topical application of capsaicin cream, both to the hind paw. The contribution of individual opioid receptor subtypes in the spinal cord to analgesia were tested at different developmental stages using epidural mu (morphine sulphate), delta (DPDPE) and kappa (U69593) opioid receptor agonists in neonatal rats aged P (postnatal day) 3, 10 and 21. ⋯ The results show that newborn rat pups are capable of displaying both allodynia and hyperalgesia following experimental inflammation that is blocked by epidural mu, delta and kappa opioids. The opioid potency is enhanced compared with antinociception in acute tests. This is not observed following capsaicin hyperalgesia and is therefore not a general consequence of C fibre induced increases in central excitability but relies upon mechanisms special to inflammatory pain.
-
Injection of a dilute solution of formalin into a rat hindpaw produces a biphasic nociceptive response consisting of an early phase during the first 5 min after formalin injection and a later phase starting after 15 min and lasting for 40-50 min. The period between the two phases of nociceptive responding is generally considered to be a phase of inactivity. We compared the nociceptive behaviors produced by a single hindpaw injection of 50 microl of formalin with those produced by two formalin injections given 20 min apart. ⋯ As these data were obtained from pentobarbital-anesthetized, spinalized rats, the data suggest further that the two excitatory phases and the active inhibition are mediated by spinal mechanisms and that the inhibition is not under regulation of a GABAergic mechanism. The implication of the results is not only further evidence of physiological control mechanisms interacting to regulate pain, but they also indicate the overriding priority of intrinsic inhibitory mechanisms. This, in turn, suggests that the clinical management of pain may be enhanced by efforts to potentiate mechanisms of inhibition.
-
Clinical Trial
Experimental human muscle pain and muscular hyperalgesia induced by combinations of serotonin and bradykinin.
In the present study, we assessed the muscle pain and possible development of muscular hyperalgesia to mechanical stimuli after two subsequent intramuscular infusions of serotonin (5-HT) and bradykinin (BKN). The pain intensity after the infusions was continuously scored on a visual analogue scale (VAS). The subjects drew the distribution of the pain areas on a map. ⋯ Cutaneous sensibility to mechanical stimuli and SPPTs were not affected by any of the combinations. The combinations of serotonin and bradykinin produce experimental muscle pain and muscular hyperalgesia to mechanical stimuli. Pre-treatment with serotonin may enhance the effect of bradykinin in the generation of muscle pain and muscular hyperalgesia in humans.