Pain
-
The aim of the study was to examine reproducibility of primary and secondary hyperalgesia in a psychophysical model of human inflammatory pain. Mild burns were produced on the crura of 12 volunteers with a 50 x 25 mm thermode (47 degrees C, 7 min). Assessments of (i) cold and warm detection thresholds, (ii) mechanical and heat pain thresholds, (iii) pain to heat (43 degrees C and 45 degrees C, 5 s), (iv) secondary hyperalgesia, and (v) skin erythema were made 1.75 and 0.5 h before, and 0, 1, 2, 4, and 6 h after a burn injury. ⋯ Habituation to the painful stimuli was demonstrated by significantly higher pain thresholds and lower pain responses on the second and third day of the study. The burn model is a sensitive psychophysical model of acute inflammatory pain, when cross-over designs and within-day comparisons are used, and the model is suitable for double-blind, placebo-controlled studies of analgesics. In similar models, we recommend that analgesic and placebo are evenly divided between right and left sides and study days.
-
Wind-up and secondary hyperalgesia both are related to central sensitization, but whereas the former is explained by homosynaptic facilitation, the latter is due to heterosynaptic facilitation. To investigate possible interactions between both types of facilitation, we tested for alterations of perceptual wind-up in the secondary hyperalgesic skin zone adjacent to a capsaicin injection with light touch (by a cotton wisp) and punctate stimuli (calibrated von Frey hairs and pin pricks). Temporal summation of pain sensation (perceptual wind-up) was only observed with a clearly noxious stimulus (pin prick) presented at a repetition frequency of 0.6 s(-1), but not 0.2 s(-1). ⋯ Thus, the leftward shift of the stimulus response function fully accounts for all alterations of pain sensitivity to punctate stimuli in the zone of secondary hyperalgesia. We conclude that when the gain of spinal transmission was changed in secondary hyperalgesia, the gain of wind-up remained unchanged. These findings indicate that secondary hyperalgesia (heterotopic facilitation) and wind-up of pain sensation (homotopic facilitation) are independent phenomena.
-
Factors influencing natural history and clinical course of pain in temporomandibular disorders (TMD) are largely unknown. Physical, psychological and behavioral data from a population-based epidemiologic study of TMD were examined in 234 cases of persons reporting TMD pain. The cases were assigned to one of five pain pattern groups based on changes in average TMD pain from baseline to 5-year follow-up: (i) remitted (49% of the sample), (ii) high-improvement (14%), (iii) low-improvement (9%), (iv) same (13%), and (v) worse (16%). ⋯ The three psychological variables, anxiety, depression, and somatization, displayed similar change patterns, but these patterns were distinctly different from those of the physical variables in that the remitted pain group was at the population mean at baseline for these psychological variables and remained there; significant improvement in psychological status was observed only in the pain group showing high improvement. The other three pain change groups exhibited elevated psychological distress scores at both baseline and 5 years. These results indicate that although the relationships among the course of pain, of physical variables, and of psychological variables are complicated, the 5-year outcome in pain is largely independent of readily discernible changes in clinical signs.
-
Temporal summation of pain occurs when repeated stimuli become increasingly painful in spite of unchanged stimulus intensity. Summation can be quantified as the difference in pain between the first and the last stimulus in a train of stimuli. The aim of the study was to compare temporal summation of pain in normal skin with summation of pain in skin with primary and secondary hyperalgesia evoked by a heat injury. ⋯ Temporal summation at high stimulus intensities was more pronounced than at lower intensities (P < 0.0002). We found no correlation between either temporal summation and area of secondary hyperalgesia, or temporal summation and pain intensity during the induction of heat injury. We conclude that the development of primary and secondary mechanical hyperalgesia after heat injury in man was not associated with changes in temporal summation of painful electrical stimuli.
-
Evidence indicates that excitatory amino acids (EAAs) like glutamate and aspartate are important in the processing of nociceptive information in the dorsal horn of the spinal cord. Recently, the role of particular EAA receptors in pain transmission and facilitated pain states has been examined utilizing spinal administration of specific receptor antagonists. Most investigators have studied the involvement of N-methyl-D-aspartate (NMDA) EAA receptors in hyperalgesia and nociception; less is known about the importance of non-NMDA EAA receptors in animal models of persistent pain. ⋯ Intrathecal NBQX also inhibited non-evoked pain behavior. In conclusion, non-NMDA receptor antagonists produced a marked decrease in pain behaviors in this model of postoperative pain. Thus, non-NMDA receptors are important for the maintenance of short-term pain behaviors caused by an incision and drugs blocking these receptors may be useful for the treatment of postoperative pain in patients.