Pain
-
Spinal cord injury leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform, we explored whether such activity emerges in a thoracic spinal cord injury (SCI) contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which were correlated across multiple adjacent dorsal roots. ⋯ We conclude that spinal cord injury promotes the emergence of epileptiform activity in spinal sensory networks that promote profound corruption of sensory signaling. This includes hyperexcitability and bursting by ectopic spiking in afferent axons that propagate bidirectionally by reentrant central and peripheral projections as well as sensory circuit hypoexcitability during the burst refractory period. More broadly, the work links circuit hyperexcitability to epileptiform circuit emergence, further strengthening it as a conceptual basis to understand features of sensory dysfunction and neuropathic pain.
-
This is the first study to empirically determine the potential for data-driven personalization in the context of chronic primary pain (CPP). Effect sizes of psychological treatments for individuals with CPP are small to moderate on average. Aiming for better treatment outcomes for the individual patient, the call to personalize CPP treatment increased over time. ⋯ However, this result warrants careful consideration. Further research is needed to shed light on the heterogeneity of psychological treatment studies and thus to uncover the full potential of data-driven personalized psychotherapy for patients with CPP. A Bayesian variance ratio meta-regression indicates empirical evidence that data-driven personalized psychotherapy for patients with chronic primary pain could increase effects of cognitive behavioral therapy.
-
Randomized Controlled Trial Multicenter Study
Parental experience of neonatal pain research while participating in the Parental touch trial (Petal).
Parental involvement in neonatal comfort care is a core component of family-centred care. Yet, parents experience a range of positive and negative feelings when providing pain-relieving interventions for their infants. Parents of infants who participated in the Parental touch trial ( Petal ), a multicentre randomised controlled trial investigating the impact of gentle parental touch on neonatal pain, were asked to complete an anonymous survey. ⋯ Parents reported that providing gentle touch to their children during painful procedures was associated with positive emotions, such as feeling "useful" (64%) and "reassured" (53%). Furthermore, nearly all parents (98%) were pleased to have participated in the Petal trial and would consider, or maybe consider, participating in further research studies. These results underscore the importance of structuring trials around parental involvement and providing opportunities for parents to be involved in providing comfort to their infants during necessary painful clinical procedures.
-
Our aim was to investigate relative contributions of central and peripheral mechanisms to knee osteoarthritis (OA) diagnosis and their independent causal association with knee OA. We performed longitudinal analysis using data from UK-Biobank participants. Knee OA was defined using International Classification of Diseases manual 10 codes from participants' hospital records. ⋯ Body mass index and MCP had independent causal effects on knee OA (OR 1.76 [95% CI, 1.64-1.88] and 1.83 [95% CI, 1.54-2.16] per unit change, respectively). In conclusion, peripheral risk factors (eg, BMI) contribute more to the development of knee OA than central risk factors (eg, MCP). Peripheral and central factors are independently causal on knee OA.
-
Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. ⋯ In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.