Pain
-
Musculoskeletal (MSK) pain is a common reason for consultation in general practice and frequently reported in children and adolescents. This study examined the prevalence of MSK pain in 13-year-old children and assessed associations with physical and psychosocial factors. Data from the Generation R Study, a population-based birth cohort, was used. ⋯ Children with MSK pain were more likely to have reported MSK pain at 6 years. Multivariable analyses showed significant associations for male sex (OR 0.74, 95% CI 0.56-0.98), high maternal educational (OR 0.69, 95% CI 0.49-0.96), higher BMI (OR 1.19, 95% CI 1.05-1.35), being physically active (OR 1.41, 95% CI 1.03-1.91), and behavioral problems (OR 1.85, 95% CI 1.33-2.59) with the presence of MSK pain. The chronic nature of MSK pain in combination with the relatively high prevalence of MSK pain in this study shows that MSK pain is already an important problem at a young age.
-
Pain anticipation during conditions of uncertainty can unveil intrinsic biases, and understanding these biases can guide pain treatment interventions. This study used machine learning and functional magnetic resonance imaging to predict anticipatory responses in a pain anticipation experiment. One hundred forty-seven participants that included healthy controls (n = 57) and individuals with current and/or past mental health diagnosis (n = 90) received cues indicating upcoming pain stimuli: 2 cues predicted high and low temperatures, while a third cue introduced uncertainty. ⋯ Three distinct response profiles emerged: subjects with a negative bias towards high pain anticipation, those with a positive bias towards low pain anticipation, and individuals whose predictions during uncertainty were unbiased. These profiles remained stable over one year, were consistent across diagnosed psychopathologies, and correlated with cognitive coping styles and underlying insula anatomy. The findings suggest that individualized and stable pain anticipation occurs in uncertain conditions.
-
Facial grimacing is used to quantify spontaneous pain in mice and other mammals, but scoring relies on humans with different levels of proficiency. Here, we developed a cloud-based software platform called PainFace ( http://painface.net ) that uses machine learning to detect 4 facial action units of the mouse grimace scale (orbitals, nose, ears, whiskers) and score facial grimaces of black-coated C57BL/6 male and female mice on a 0 to 8 scale. ⋯ By analyzing the frequency distribution of grimace scores, we found that mice spent 7x more time in a "high grimace" state following laparotomy surgery relative to sham surgery controls. Our study shows that PainFace reproducibly quantifies facial grimaces indicative of nonevoked spontaneous pain and enables laboratories to standardize and scale-up facial grimace analyses.
-
Secreted microRNAs (miRNAs) have been detected in various body fluids including the cerebrospinal fluid, yet their direct role in regulating synaptic transmission remains uncertain. We found that intrathecal injection of low dose of let-7b (1 μg) induced short-term (<24 hours) mechanical allodynia and heat hyperalgesia, a response that is compromised in Tlr7-/- or Trpa1-/- mice. Ex vivo and in vivo calcium imaging in GCaMP6-report mice revealed increased calcium signal in spinal cord afferent terminals and doral root ganglion/dorsal root ganglia neurons following spinal perfusion and intraplantar injection of let-7b. ⋯ The high dose of let-7b also induced microgliosis in the spinal cord. Of interest, intrathecal minocycline only inhibited let-7b-induced mechanical allodynia in male but not female mice. Our findings indicate that the secreted microRNA let-7b has the capacity to provoke pain through both neuronal and glial signaling, thereby establishing miRNA as an emerging neuromodulator.
-
Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. ⋯ Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.