Pain
-
Meta Analysis
Brain activations during pain: a neuroimaging meta-analysis of pain patients and healthy controls.
In response to recent publications from pain neuroimaging experiments, there has been a debate about the existence of a primary pain region in the brain. Yet, there are few meta-analyses providing assessments of the minimum cerebral denominators of pain. Here, we used a statistical meta-analysis method, called activation likelihood estimation, to define (1) core brain regions activated by pain per se, irrelevant of pain modality, paradigm, or participants and (2) activation likelihood estimation commonalities and differences between patients with chronic pain and healthy individuals. ⋯ Common activations for healthy subjects and patients with pain alike included the thalamus, ACC, insula, and cerebellum. A comparative analysis revealed that healthy individuals were more likely to activate the cingulum, thalamus, and insula. Our results point toward the central role of the insular cortex and ACC in pain processing, irrelevant of modality, body part, or clinical experience; thus, furthering the importance of ACC and insular activation as key regions for the human experience of pain.
-
The "gate control theory of pain" of 1965 became famous for integrating clinical observations and the understanding of spinal dorsal horn circuitry at that time into a testable model. Although it became rapidly clear that spinal circuitry is much more complex than that proposed by Melzack and Wall, their prediction of the clinical efficacy of transcutaneous electrical nerve stimulation and spinal cord stimulation has left an important clinical legacy also 50 years later. In the meantime, it has been recognized that the sensitivity of the nociceptive system can be decreased or increased and that this "gain control" can occur at peripheral, spinal, and supraspinal levels. ⋯ This hypothesis generation in the diagnostic process is an essential step towards a mechanism-based treatment of pain. The challenge now is to generate the rational basis of multimodal pain therapy algorithms by including profile-based stratification of patients into studies on efficacy of pharmacological and nonpharmacological treatment modalities. This review outlines the current evidence base for this approach.
-
Physical activity has multiple health benefits but may also increase the risk of developing musculoskeletal pain (MSP). However, the relationship between physical activity and MSP has not been well characterized. This study examined the dose-response relationship between sports activity and MSP among adolescents. ⋯ In longitudinal analysis, the risk ratio for developing pain at 1-year follow-up per 1 h/wk increase in baseline sports activity was 1.03 (95% confidence interval = 1.02-1.05). Spline models indicated a linear association (P < 0.001) but not a nonlinear association (P ≥ 0.45). The more the adolescents played sports, the more likely they were to have and develop pain.