Pain
-
Patients with chronic fatigue syndrome (CFS) frequently demonstrate intolerance to physical exertion that is often reported as increased and long-lasting fatigue. Because no specific metabolic alterations have been identified in CFS patients, we hypothesized that sensitized fatigue pathways become activated during exercise corresponding with increased fatigue. After exhausting handgrip exercise, muscle metabolites were trapped in the forearm tissues of 39 CFS patients and 29 normal control (NC) by sudden occlusion for up to 5 minutes. ⋯ Quantitative sensory testing demonstrated heat and mechanical hyperalgesia in CFS subjects. Our findings provide indirect evidence for significant contributions of peripheral tissues to the increased exercise-related fatigue in CFS patients consistent with sensitization of fatigue pathways. Future interventions that reduce sensitization of fatigue pathways in CFS patients may be of therapeutic benefit.
-
The social domain of the biopsychosocial model of pain has been greatly understudied compared with the biological and psychological domains but holds great promise for furthering our understanding, and better treatment, of pain. Recent years have seen an explosion of interest in social neuroscience and have revealed the ability of pain stimuli to alter social interactions. ⋯ This review describes the state of science in both humans and nonhuman animals, and notes intriguing parallels in observations from both species. Indeed, my laboratory is starting to demonstrate perfectly translatable findings regarding social modulation of pain in rodents and humans.
-
Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. ⋯ Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.
-
Chronic pain is a major characteristic feature of sickle cell disease (SCD). The refractory nature of pain and the development of chronic pain syndromes in many patients with SCD suggest that central neural mechanisms contribute to pain in this disease. We used HbSS-BERK sickle mice, which show chronic features of pain similar to those observed in SCD, and determined whether sensitization of nociceptive neurons in the spinal cord contributes to pain and hyperalgesia in SCD. ⋯ Compared with control HbAA-BERK mice, nociceptive dorsal horn neurons in sickle mice exhibited enhanced excitability as evidenced by enlarged receptive fields, increased rate of spontaneous activity, lower mechanical thresholds, enhanced responses to mechanical stimuli, and prolonged afterdischarges following mechanical stimulation. These changes were accompanied by increased phosphorylation of mitogen-activated protein kinases (MAPKs) in the spinal cord that are known to contribute to neuronal hyperexcitability, including c-Jun N-terminal kinase (JNK), p44/p42 extracellular signaling-regulated kinase (ERK), and p38. These findings demonstrate that central sensitization contributes to pain in SCD.