Pain
-
The evidence on the patterns of nonsteroidal anti-inflammatory drug (NSAID) use according to pain prevalence and clinical guidelines in older people is sparse. This cross-sectional study examined the patterns of NSAID use according to pain prevalence and concordance with clinical guideline recommendations for safe NSAID use in older people, in relation to duration of use, patterns of use, concomitant use of proton pump inhibitors (PPIs), and prevalence of specific drug interactions. Community-dwelling men (n=1696) age ≥ 70 years living in Sydney were studied. 8.2% (n=139) of participants reported regular NSAID use compared with 2.9% (n=50) reporting as-needed use. ⋯ In relation to pain prevalence, regular NSAID users were significantly more likely to report chronic pain (P<.0001), recent pain (P=.0001), and chronic intrusive pain (P<.0001) compared with nonregular users. The findings of this study indicate that NSAID prescribing practices do not align with clinical guidelines for safe use in older people. This difference between the guideline recommendations and what is happening in the real world should be explored further.
-
Biological differences in sensory processing between human and model organisms may present significant obstacles to translational approaches in treating chronic pain. To better understand the physiology of human sensory neurons, we performed whole-cell patch-clamp recordings from 141 human dorsal root ganglion (hDRG) neurons from 5 young adult donors without chronic pain. Nearly all small-diameter hDRG neurons (<50 μm) displayed an inflection on the descending slope of the action potential, a defining feature of rodent nociceptive neurons. ⋯ Compared to electrically evoked action potentials, chemically induced action potentials were triggered from less depolarized thresholds and showed distinct afterhyperpolarization kinetics. These data indicate that most small/medium hDRG neurons can be classified as nociceptors, that they respond directly to compounds that produce pain and itch, and that they can be activated and sensitized by inflammatory mediators. The use of hDRG neurons as preclinical vehicles for target validation is discussed.
-
Extracellular high mobility group box-1 protein (HMGB1) plays important roles in the pathogenesis of nerve injury- and cancer-induced pain. However, the involvement of spinal HMGB1 in arthritis-induced pain has not been examined previously and is the focus of this study. Immunohistochemistry showed that HMGB1 is expressed in neurons and glial cells in the spinal cord. ⋯ Furthermore, the pro-nociceptive effect of i.t. injection of HMGB1 persisted in Tlr2- and Rage-, but was absent in Tlr4-deficient mice. The same pattern was observed for HMGB1-induced spinal microglia and astrocyte activation and cytokine induction. These results demonstrate that spinal HMGB1 contributes to nociceptive signal transmission via activation of TLR4 and point to disulfide HMGB1 inhibition as a potential therapeutic strategy in treatment of chronic inflammatory pain.
-
Cervical facet joint injury induces persistent pain and central sensitization. Preventing the peripheral neuronal signals that initiate sensitization attenuates neuropathic pain. Yet, there is no clear relationship among facet joint afferent activity, development of central sensitization, and pain, which may be hindering effective treatments for this pain syndrome. ⋯ Silencing afferent activity during the development of neuronal hyperexcitability (4 hours, 8 hours, 1 day) attenuated hyperalgesia and neuronal hyperexcitability (P<.045) only for the treatment given 4 hours after injury. This study suggests that early afferent activity from the injured facet induces development of spinal sensitization via spinal excitatory glutamatergic signaling. Peripheral intervention blocking afferent activity is effective only over a short period of time early after injury and before spinal modifications develop, and is independent of modulating spinal glial activation.
-
Previous studies have shown that hyperpolarisation-activated cyclic nucleotide-gated (HCN)-2 ion channels regulate the firing frequency of nociceptive sensory neurons and thus play a central role in both inflammatory and neuropathic pain conditions. Here we use ivabradine, a clinically approved anti-anginal agent that blocks all HCN channel isoforms approximately equally, to investigate the effect on inflammatory and neuropathic pain of HCN ion channel block. We show that ivabradine does not have major off-target effects on a sample group of Na, Ca, and K ion channels, and that it is peripherally restricted because it is a substrate for the P-glycoprotein (PgP) multidrug transporter that is expressed in the blood-brain barrier. ⋯ In the formalin model of inflammatory pain, ivabradine reduced pain behaviour only in the second (inflammatory) phase. In nerve injury and chemotherapy models of neuropathic pain, we observed rapid and effective analgesia as effective as that with gabapentin. We conclude that both inflammatory and neuropathic pain are rapidly inhibited by blocking HCN-dependent repetitive firing in peripheral nociceptive neurons.