Pain
-
The unpredictable efficacy of current therapies for neuropathic pain may reflect diverse etiological mechanisms operating between, and within, diseases. As descriptions of pain rarely establish specific mechanisms, a tool that can identify underlying causes of neuropathic pain would be useful in developing patient-specific treatments. Rate-dependent depression (RDD), a measure of the change in amplitude of the Hoffman reflex over consecutive stimulations, is attenuated in diabetic rats that also exhibit impaired spinal γ-aminobutyric acid (GABA)A receptor function, reduced spinal potassium chloride co-transporter (KCC2) expression, and indices of painful neuropathy. ⋯ Treating diabetic rats with TrkB/Fc restored RDD and alleviated indices of painful neuropathy. In paclitaxel-treated rats, RDD was not impaired and behavioral indices of neuropathic pain were not associated with spinal GABAergic dysfunction or reduced dorsal spinal KCC2 expression. Our data reveal BDNF as part of the mechanism underlying spinal cord disinhibition caused by altered GABAA receptor function in diabetic rats and suggest that RDD deficits may be a useful indicator of neuropathic pain states associated with spinal disinhibition, thereby revealing specific therapeutic targets.
-
Although nerve injury-induced long-term postsynaptic changes have been investigated, less is known regarding the molecular mechanisms within presynaptic axonal terminals. We investigated the molecular changes in presynaptic nerve terminals underlying chronic pain-induced plastic changes in the medial prefrontal cortex (mPFC). After neuropathic pain was induced by spared nerve injury (SNI) in rats, we assessed the release of the excitatory neurotransmitter glutamate by using in vitro synaptosomal preparations from the mPFC. ⋯ Chronic pain upregulated the phosphorylation of endogenous protein kinases, including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and Ca(2+)/calmodulin-dependent kinase II (CaMKII), and synapsin I, the primary presynaptic target of ERK1/2 and CaMKII. Both presynaptic proteins and protein kinases were upregulated after SNI in a time-dependent manner. These results indicate that the long-term neuropathic pain-induced enhancement of glutamate release in the mPFC is linked to increased synaptic vesicle proteins and the activation of the ERK1/2- and CaMKII-synapsin signaling cascade in presynaptic axonal terminals.