Pain
-
Randomized Controlled Trial
Oxycodone alters temporal summation but not conditioned pain modulation: preclinical findings and possible relations to mechanisms of opioid analgesia.
Opioid analgesia is mediated primarily by modulating (inhibiting and enhancing) pain mechanisms at the spinal and supraspinal levels. Advanced psychophysical paradigms of temporal summation (TS) and conditioned pain modulation (CPM) likely represent pain mechanisms at both levels. Therefore, the study of opioid effects on TS and CPM can shed light on their analgesic mechanisms in humans. ⋯ In contrast, no significant effects of either oxycodone (F=0.871, P=.458) or placebo (F=2.086, P=.106) on the magnitude of CPM were found. These results suggest that under the current experimental conditions, oxycodone exerted spinal, rather than supraspinal, analgesic effects. Furthermore, compared with CPM, TS seems more suitable for studying the mechanisms of opioid analgesia in humans.
-
An accurate means of identifying patients at high risk for chronic disabling pain could lead to more cost-effective care, with more intensive interventions targeted to those likely to benefit most. The Chronic Pain Risk Score is a tool developed to predict risk for chronic pain. The aim of this study was to examine whether its predictive ability could be enhanced by: (1) improved measures of the constructs it assesses (Improved Chronic Pain Risk Model); and (2) adding other predictors (Expanded Chronic Pain Risk Model). ⋯ The Expanded Model improved significantly on the prediction of the Improved Model (NRI=0.56, P<0.001) and demonstrated excellent discriminative ability (AUC=0.84, 95% CI=0.79-0.88). The Improved Model (AUC=0.79, 95% CI=0.75-0.84) and the Chronic Pain Risk Score (AUC=0.76, 95% CI=0.71-0.81) showed acceptable discriminative ability. A limited set of measures may be used to predict risk for future clinically significant pain in patients initiating primary care for back pain, but further evaluation of prognostic models is needed.
-
Randomized Controlled Trial
Nocebo hyperalgesia induced by social observational learning.
Nocebo effects can be acquired by verbal suggestion, but it is unknown whether they can be induced through observational learning and whether they are influenced by factors known to influence pain perception, such as pain anxiety or pain catastrophizing. Eighty-five female students (aged 22.5 ± 4.4 years) were randomly assigned to one of three conditions. Participants in the control condition (CC) received information that an ointment had no effect on pain perception. ⋯ The nocebo response correlated with pain catastrophizing but not with pain anxiety or somatosensory amplification. A nocebo response to pressure pain was induced by observational learning but not by verbal suggestion. This finding highlights the importance of investigating the influence of observational learning on nocebo hyperalgesia.
-
Oxytocin (OT) and arginine vasopressin (AVP) are 2 neuropeptides that display well-known effects on the reproductive system. Although still controversial, oxytocin and vasopressin were demonstrated to exert potent effects on the nociceptive system when administered directly in various central nervous structures. On the other hand, little is known about their peripheral (hormonal) actions on nociception and pain responses. ⋯ Stress-induced analgesia was transiently lost after i.v. administration of OTR antagonist. Together, the present work provides straightforward evidence that blood levels of OT and AVP modulate nociception, windup plasticity and pain responses. The final target structures explaining these effects remains to be identified but are likely to be C-type nociceptors.
-
Individual vulnerability factors influencing the function of the hypothalamic-pituitary-adrenal axis may contribute to the risk of the development of persistent musculoskeletal pain after traumatic stress exposure. The objective of the study was to evaluate the association between polymorphisms in the gene encoding FK506 binding protein 51, FKBP5, a glucocorticoid receptor co-chaperone, and musculoskeletal pain severity 6 weeks after 2 common trauma exposures. The study included data from 2 prospective emergency department-based cohorts: a discovery cohort (n=949) of European Americans experiencing motor vehicle collision and a replication cohort of adult European American women experiencing sexual assault (n=53). ⋯ The association of rs3800373, rs9380526, rs9394314, rs2817032, and rs2817040 with neck pain and/or overall pain 6 weeks after trauma was replicated in the sexual assault cohort, showing the same direction of the effect in each case. The results of this study indicate that genetic variants in FKBP5 influence the severity of musculoskeletal pain symptoms experienced during the weeks after motor vehicle collision and sexual assault. These results suggest that glucocorticoid pathways influence the development of persistent posttraumatic pain, and that such pathways may be a target of pharmacologic interventions aimed at improving recovery after trauma.