Pain
-
Opioid analgesia is compromised by intracellular mediators such as protein kinase C (PKC). The phosphatidylinositol hydrolysis-coupled serotonin receptor 5-HT2 is ideally suited to promote PKC activation. We test the hypothesis that 5-HT2A and 5-HT2B receptors, which have been previously shown to become pro-excitatory after spinal nerve ligation (SNL), can negatively influence the ability of opioids to depress spinal excitation evoked by noxious input. ⋯ As assessed from double immunofluorescence labeling for confocal laser scanning microscopy, scarce dorsal horn cell processes showed co-localization color overlay for 5-HT2AR/MOR, 5-HT2BR/MOR, 5-HT2AR/DOR, or 5-HT2BR/DOR in sham-operated rats. Intensity correlation-based analyses showed significant increases in 5-HT2AR/MOR and 5-HT2BR/MOR co-localizations after SNL. These results indicate that plasticity of spinal serotonergic neurotransmission can selectively reduce spinal MOR mechanisms via 5-HT2A and 5-HT2B receptors, including upregulation of the latter and increased expression in dorsal horn neurons containing MOR.
-
Randomized Controlled Trial
Endogenous opioids mediate left dorsolateral prefrontal cortex rTMS-induced analgesia.
The concurrent rise of undertreated pain and opiate abuse poses a unique challenge to physicians and researchers alike. A focal, noninvasive form of brain stimulation called repetitive transcranial magnetic stimulation (rTMS) has been shown to produce acute and chronic analgesic effects when applied to dorsolateral prefrontal cortex (DLPFC), but the anatomical and pharmacological mechanisms by which prefrontal rTMS induces analgesia remain unclear. Data suggest that DLPFC mediates top-down analgesia via gain modulation of the supraspinal opioidergic circuit. ⋯ Naloxone pretreatment significantly reduced the analgesic effects of real rTMS. These results demonstrate that left DLPFC rTMS-induced analgesia requires opioid activity and suggest that rTMS drives endogenous opioidergic pain relief in the human brain. Further studies with chronic dosing regimens of drugs that block or augment the actions of opiates are needed to determine whether TMS can augment opiates in chronic or postoperative pain management.