Pain
-
Chronic opioid exposure is known to produce neuroplastic changes in animals; however, it is not known if opioids used over short periods of time and at analgesic dosages can similarly change brain structure in humans. In this longitudinal, magnetic resonance imaging study, 10 individuals with chronic low back pain were administered oral morphine daily for 1 month. High-resolution anatomical images of the brain were acquired immediately before and after the morphine administration period. ⋯ The results add to a growing body of literature showing that opioid exposure causes structural and functional changes in reward- and affect-processing circuitry. Morphologic changes occur rapidly in humans during new exposure to prescription opioid analgesics. Further research is needed to determine the clinical impact of those opioid-induced gray matter changes.
-
Tissue injury during a critical period of early life can facilitate spontaneous glutamatergic transmission within developing pain circuits in the superficial dorsal horn (SDH) of the spinal cord. However, the extent to which neonatal tissue damage strengthens nociceptive synaptic input to specific subpopulations of SDH neurons, as well as the mechanisms underlying this distinct form of synaptic plasticity, remains unclear. Here we use in vitro whole-cell patch clamp recordings from rodent spinal cord slices to demonstrate that neonatal surgical injury selectively potentiates high-threshold primary afferent input to immature lamina II neurons. ⋯ This occurs in a widespread manner within the developing SDH, as incision elevated miniature excitatory postsynaptic current frequency in both GABAergic and presumed glutamatergic lamina II neurons of Gad-GFP transgenic mice. The administration of exogenous nerve growth factor into the rat hindpaw mimicked the effects of early tissue damage on excitatory synaptic function, while blocking trkA receptors in vivo abolished the changes in both spontaneous and primary afferent-evoked glutamatergic transmission following incision. These findings illustrate that neonatal tissue damage can alter the gain of developing pain pathways by activating nerve growth factor-dependent signaling cascades, which modify synaptic efficacy at the first site of nociceptive processing within the central nervous system.
-
Comparative Study
A comparison of pain measures in newborn infants after cardiac surgery.
Accurate pain assessment tools to evaluate pain in critically ill neonates in the postoperative period are lacking. Therefore, we compared a number of potentially useful indices of pain in critically ill neonates following cardiac surgery. Eighty-one full-term infants were studied during the first 48 postoperative hours and the following indices were measured: heart rate, mean arterial blood pressure, heart-rate variability, urinary and plasma cortisol, and 4 composite pain measurement scales: Children's and Infants' Postoperative Pain Scale (CHIPPS), CRIES, COMFORT, and Premature Infant Pain Profile (PIPP). ⋯ The factor structure of the COMFORT score revealed that both behavioural and physiological variables account for a significant proportion of the variance (45% and 15%, respectively; P<0.001). Plasma concentrations of cortisol increased postoperatively but urinary cortisol excretion did not change significantly. Of the pain indices studied, the COMFORT score performed best, with both behavioural and physiological components providing significant contributions.
-
Clinical studies have revealed that up to 92% of major depressed patients report pain complaints such as back or abdominal pain. Furthermore, patients suffering from depression exhibit increased superficial pain thresholds and decreased ischemic (deep) pain thresholds during experimental pain testing in comparison to healthy controls. Here, we aimed to investigate a putative role of Aδ- and C-fibre activation in altered pain perception in the disease. ⋯ Thus, Aδ-LEP might reflect the physiological correlate of the augmented superficial pain thresholds during depression. On the contrary, the C-fibre component mediates the facets of pain processing, outlasting the stimulation period, and has been shown to be exaggerated in chronic pain states. Therefore, the functional over-representation of the C-fibre component found in our study might be a possible link between depression and associated pain complaints.