Pain
-
Randomized Controlled Trial
Long-term effects of routine morphine infusion in mechanically ventilated neonates on children's functioning: five-year follow-up of a randomized controlled trial.
Newborns on ventilatory support often receive morphine to induce analgesia. Animal experiments suggest that this may impair subsequent cognitive and behavioral development. There are sparse human data on long-term effects of neonatal morphine. ⋯ However, scores on one IQ subtest, "visual analysis," were significantly negatively related to having received morphine and to open-label morphine consumption the first 28 days. The finding of a significant effect of morphine on the "visual analysis" IQ subtest calls for follow-up at a later age focusing on the higher-order neurocognitive functions. Morphine received in the neonatal period has negative effects on the child's cognitive functioning at the age of 5 years which warrants follow-up at a later age.
-
The development of new strategies for the treatment of acute pain requires the identification of novel nonopioid receptor targets. This study explored whether δ-subunit-containing GABA(A)Rs (δGABA(A)Rs) in neurons of the spinal cord dorsal horn generate a tonic inhibitory conductance in vitro and whether δGABA(A)R activity regulates acute nociception. Whole-cell recordings revealed that δGABA(A)Rs generate a tonic inhibitory conductance in cultured spinal neurons and lamina II neurons in spinal cord slices. ⋯ Surprisingly, THIP reduced the enhanced phase 2 response in Gabrd(-/-) mice. Together, these results suggest that δGABA(A)Rs in spinal neurons play a major physiological and pharmacological role in the regulation of acute nociception and central sensitization. Spinal δ-subunit-containing GABA(A) receptors were identified with electrophysiological methods and behavioral models as novel targets for the treatment of acute pain.
-
The benefits of transcutaneous electrical nerve stimulation (TENS) for pain relief have not been reliably established, as most systematic reviews find poor methodological quality in many studies. The paradox within the evidence base for TENS is that despite identified sources of bias that may lead to an overestimation of treatment effects, no benefits for TENS can be clearly demonstrated. Conventional assessments of quality assume a single direction of bias, and little work has been undertaken examining other directions of bias. ⋯ We propose criteria for judging directions of bias in future studies of TENS that may be adapted to assess other trials in which implementation fidelity is important, such as other nonpharmacological interventions for pain. Poor implementation fidelity was identified as a significant source of bias in systematic reviews of TENS studies and might explain lack of consistent treatment effects of TENS in pain. Here, criteria for assessing methodology are proposed for use in designing future clinical trials of TENS.