Pain
-
Several brain areas that constitute the neural matrix of pain can be activated by noxious stimuli and by pain-relevant cues, such as pictures, facial expressions, and pain-related words. Although chronic pain patients are frequently exposed to pain-related words, it remains unclear whether their pain matrix is specifically activated during the processing of such stimuli in comparison to healthy subjects. To answer this question, we compared the neural activations induced by verbal pain descriptors in a sample of migraine patients with activations in healthy controls using functional magnetic resonance imaging. ⋯ More pronounced pain-related activation was observed in affective pain-related regions in the patient as compared with the control group during imagination. During distraction, no differential engagement of single brain structures in response to pain-related words could be observed between groups. Overall, our findings indicate that there is an involvement of brain regions associated with the affective and sensory-discriminative dimension of pain in the processing of pain-related words in migraine patients, and that the recruitment of those regions associated with pain-related affect is enhanced in patients with chronic pain experiences.
-
Transient receptor potential ion channels (TRPs) expressed in the periphery sense and electrically transduce noxious stimuli to transmit the signals to the brain. Many natural and synthetic ligands for the sensory TRPs have been found, but little is known about endogenous inhibitors of these TRP channels. Recently, we reported that farnesyl pyrophosphate, an endogenous substance produced in the mevalonate pathway, is a specific activator for TRPV3. ⋯ Furthermore, local IPP pretreatment significantly reversed mechanical and thermal hypersensitivity of inflamed animals. Taken together, the present study suggests that IPP is a novel endogenous TRPA1 and TRPV3 inhibitor that causes local antinociception. Our results may provide useful chemical information to elucidate TRP physiology in peripheral pain sensation.
-
Little is known about the pathophysiological mechanisms of radicular pain. We investigated changes in synaptic transmission of substantia gelatinosa (SG) neurons after an injury to the L5 nerve root using in vivo patch-clamp recording. A total of 141 SG neurons were recorded at L4 and L5 segmental levels of the spinal cord in root constriction rats and sham-operated control rats. ⋯ The mean amplitudes of EPSCs evoked by mechanical stimuli at L4 and L5 segmental levels were larger in the root constriction group than in the control group. The results indicated that injuring the nerve root led to characteristic excitatory synaptic transmission in SG neurons at each segmental level and changed sensory processing in SG neurons at the segment to which the injured nerve projected. These changes could lead to spontaneous pain, mechanical allodynia, and hyperalgesia contributing to the pathogenesis of radicular pain.
-
Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). ⋯ Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects.
-
The statins are a well-established class of drugs that lower plasma cholesterol levels by inhibiting HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzyme A) reductase. They are widely used for the treatment of hypercholesterolemia and for the prevention of coronary heart disease. Recent studies suggest that statins have anti-inflammatory effects beyond their lipid-lowering properties. ⋯ The increase of interleukin-1β mRNA in the ipsilateral side of spinal cords was also reduced by the treatment of either statin. We identified a potential new application of statins in the treatment of neuropathic pain. The pain-alleviating effects of statins are likely attributable to their immunomodulatory effects.