Pain
-
Voltage-gated ion channels are implicated in pain sensation and transmission signaling mechanisms within both peripheral nociceptors and the spinal cord. Genetic knockdown and knockout experiments have shown that specific channel isoforms, including Na(V)1.7 and Na(V)1.8 sodium channels and Ca(V)3.2 T-type calcium channels, play distinct pronociceptive roles. We have rationally designed and synthesized a novel small organic compound (Z123212) that modulates both recombinant and native sodium and calcium channel currents by selectively stabilizing channels in their slow-inactivated state. ⋯ In vivo experiments demonstrate that oral administration of Z123212 is efficacious in reversing thermal hyperalgesia and tactile allodynia in the rat spinal nerve ligation model of neuropathic pain and also produces acute antinociception in the hot-plate test. At therapeutically relevant concentrations, Z123212 did not cause significant motor or cardiovascular adverse effects. Taken together, the state-dependent inhibition of sodium and calcium channels in both the peripheral and central pain signaling pathways may provide a synergistic mechanism toward the development of a novel class of pain therapeutics.
-
Neuropathic pain is associated with reorganization of spinal synaptic circuits, implying that adhesion proteins that normally build and modify synapses must be involved. The adhesion proteins E- and N-cadherin delineate different synapses furnished by nociceptive primary afferents, but dynamic aspects of cadherin localization in relationship to onset, maintenance or reversibility of neuropathic pain are uncharacterized. Here, we find very different responses of these cadherins to L5 spinal nerve transection (SNT)-induced mechanical allodynia and to intrathecal glial derived neurotrophic factor (GDNF), which has potent analgesic effects in this pain model. ⋯ Patterns of immunolabeling for GDNF receptor components GFRα1, NCAM, and RET after L5 SNT suggest that GFRα1 and NCAM are the principal receptors operative in this model. In addition, GFRα1 codistributes with E-cadherin, but not N-cadherin, profiles. Together, these data indicate strikingly divergent patterns of temporal and molecular regulation of different cadherins at distinct nociceptive circuits in response to spinal nerve injury, suggesting that the two cadherins and the circuits with which they are affiliated participate in different aspects of synaptic and circuit reorganization associated with neuropathic pain.
-
Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitization manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity that can be detected by electrophysiological or imaging techniques. ⋯ Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have certainly come a long way since the first discovery of activity-dependent synaptic plasticity in the spinal cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, discovering the genetic and environmental contributors to and objective biomarkers of central sensitization will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and promiscuous form of pain plasticity.
-
Quantitative sensory testing (QST) is an instrument to assess positive and negative sensory signs, helping to identify mechanisms underlying pathologic pain conditions. In this study, we evaluated the test-retest reliability (TR-R) and the interobserver reliability (IO-R) of QST in patients with sensory disturbances of different etiologies. In 4 centres, 60 patients (37 male and 23 female, 56.4±1.9years) with lesions or diseases of the somatosensory system were included. ⋯ We conclude that standardized QST performed by trained examiners is a valuable diagnostic instrument with good test-retest and interobserver reliability within 2days. With standardized training, observer bias is much lower than random variance. Quantitative sensory testing performed by trained examiners is a valuable diagnostic instrument with good interobserver and test-retest reliability for use in patients with sensory disturbances of different etiologies to help identify mechanisms of neuropathic and non-neuropathic pain.
-
Review Meta Analysis
Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis.
Acceptance-based interventions such as mindfulness-based stress reduction program and acceptance and commitment therapy are alternative therapies for cognitive behavioral therapy for treating chronic pain patients. To assess the effects of acceptance-based interventions on patients with chronic pain, we conducted a systematic review and meta-analysis of controlled and noncontrolled studies reporting effects on mental and physical health of pain patients. All studies were rated for quality. ⋯ It is recommended to focus on therapies that integrate mindfulness and behavioral therapy. Acceptance-based therapies have small to medium effects on physical and mental health in chronic pain patients. These effects are comparable to those of cognitive behavioral therapy.