Journal of neuroscience research
-
Hydrogen sulfide (H2 S), a toxic volcanic gas, functions as a gaseous physiological and pathophysiological molecule. Recently we have shown that H2 S elicits acute pain through the activation of transient receptor potential ankyrin 1 (TRPA1), which is expressed mainly in primary nociceptive neurons. We also demonstrated enhancement of H2 S-induced TRPA1 activation and pain under inflammatory acidic conditions, but the underlying mechanism has not been elucidated. ⋯ H2 S failed to increase the intracellular ROS level and only slightly decreased pHi. These results suggest that H2 S directly activates TRPA1 and that its increment of diffusion into cells may be involved in the potentiation of TRPA1 activation under external acidic conditions. Thus, our study supports the pathophysiological functions of H2 S in inflammatory pain.
-
Understanding the molecular mechanism of cerebral hypoxic preconditioning (HPC)-induced endogenous neuroprotection may provide potential therapeutic targets for ischemic stroke. By using bioinformatics analysis, we found that miR-181b, one of 19 differentially expressed miRNAs, may target aconitate hydratase (ACO2), heat shock protein A5 (HSPA5), and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) among 26 changed protein kinase C isoform-specific interacting proteins in HPC mouse brain. In this study, the role of miR-181b in oxygen-glucose deprivation (OGD)-induced N2A cell ischemic injury in vitro and mouse middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury in vivo, and its regulation of ACO2, HSPA5, and UCHL1 were further determined. ⋯ By using a T7 promoter-driven control dual luciferase assay, we confirmed that miR-181b could bind to the 3'-untranslated rergions of HSPA5 and UCHL1 mRNAs and repress their translations. miR-181b antagomir reduced caspase-3 cleavage and neural cell loss in cerebral ischemic cortex and improved neurological deficit of mice after MCAO. In addition, HSPA5 and UCHL1 short interfering RNAs (siRNAs) blocked anti-miR-181b-mediated neuroprotection against OGD-induced N2A cell injury in vitro. These results suggest that the downregulated miR-181b induces neuroprotection against ischemic injury through negatively regulating HSPA5 and UCHL1 protein levels, providing a potential therapeutic target for ischemic stroke.
-
This study investigated the hypothesis that estrogen controls hindbrain AMP-activated protein kinase (AMPK) activity and regulation of blood glucose, counterregulatory hormone secretion, and hypothalamic nerve cell transcriptional status. Dorsal vagal complex A2 noradrenergic neurons were laser microdissected from estradiol benzoate (E)- or oil (O)-implanted ovariectomized female rats after caudal fourth ventricular (CV4) delivery of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR), for Western blot analysis. E advanced AICAR-induced increases in A2 phospho-AMPK (pAMPK) expression and in blood glucose levels and was required for augmentation of Fos, estrogen receptor-α (ERα), monocarboxylate transporter-2, and glucose transporter-3 protein in A2 neurons and enhancement of corticosterone secretion by this treatment paradigm. ⋯ The data provide unique evidence that A2 neurons express both ERα and -β proteins and that AMPK upregulates cellular sensitivity to ERα-mediated signaling during simulated energy insufficiency. The results also imply that estrogen promotes glucose and lactate uptake by these cells under those conditions. Evidence for correlation between hindbrain AMPK and hypothalamic nerve cell genomic activation provides novel proof for functional connectivity between this hindbrain sensor and higher order metabolic brain loci while demonstrating a modulatory role for estrogen in this interaction.
-
Congenital hydrocephalus is a relatively common and debilitating birth defect with several known physiological causes. Dysfunction of motile cilia on the ependymal cells that line the ventricular surface of the brain can result in hydrocephalus by hindering the proper flow of cerebrospinal fluid. ⋯ Mouse models of primary ciliary dyskinesia reveal strain-specific differences in the appearance and severity of hydrocephalus, indicating the presence of genetic modifiers segregating in inbred strains. These models may provide valuable insight into the genetic mechanisms that regulate susceptibility to hydrocephalus under the conditions of ependymal ciliary dysfunction.
-
Neuropathic pain is often severe. Deep brain stimulation (DBS) is a treatment method for neuropathic pain, but its mechanism of action remains unclear. Patients with neuropathic pain are affected by various stimulations, such as mechanical and cold stimuli, but studies of cold allodynia showed the associated pain to be less than that caused by mechanical stimuli. ⋯ We observed differences in the degree of cold allodynia elicited between a conventional method that measured the number of pain responses and our altered novel method that measured the duration of pain responses. Cold allodynia after DBS did not differ when conventional analysis was applied, but the pain response duration was decreased. We suggest that VPL DBS was partially effective in cold allodynia, implicating complex pathways of pain signaling.