Journal of neuroscience research
-
The transcription factor Pitx3 is crucial for the development and differentiation of dopamine (DA) neurons. Our previous work has shown the Pitx3 can up-regulate the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma cell line SH-SY5Y. Primary astrocytes are the major nonneuronal cells and can be easily modified genetically to deliver therapeutic molecules into the brain, so we investigated whether Pitx3 can increase the expression and secretion of BDNF and GDNF in primary astrocytes. ⋯ We found that the BDNF and GDNF levels were 1.4-fold and 1.5-fold higher in the CM from Pitx3-transfected astrocytes than empty vectors-transfected controls. Incubation with the CM from Pitx3-transfected astrocytes significantly attenuated the rotenone-induced DA neuron injury, and such protection can be significantly blocked by preincubation with antibodies against either BDNF or GDNF, whereas preincubation with purified BDNF or GDNF replicated the neuroprotection against rotenone-induced injury in VM cultures. These results demonstrate that Pitx3-transfection in astrocytes can up-regulate BDNF and GDNF expression and produce protective benefit to DA neurons, which might be a potential therapeutic alternative for Parkinson's disease.
-
The fibrotic scar formed after central nervous system injury has been considered an obstacle to axonal regeneration. The present study was designed to examine whether cell transplantation into a damaged central nervous system can reduce fibrotic scar formation and promote axonal regeneration. Nigrostriatal dopaminergic axons were unilaterally transected in rats and cultures of olfactory-ensheathing cells (OECs), and olfactory nerve fibroblasts were transplanted into the lesion site. ⋯ Reactive astrocytes and chondroitin sulfate immunoreactivity increased around the transplants, whereas the deposition of type IV collagen and fibrotic scar formation were completely prevented at the lesion site. Transplantation of meningeal fibroblasts similarly prevented the formation of the fibrotic scar, although its effect on regeneration was less potent than transplantation of OECs and olfactory nerve fibroblasts. The present results suggest that elimination of the inhibitory fibrotic scar is important for neural regeneration.
-
The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is involved in the generation of inflammatory and neuropathic pain. This study investigated if TNF-alpha has any effect on spinal synaptic and/or sensory transmission by using whole-cell recordings of substantia gelatinosa (SG) neurons in transverse lumbar spinal cord slices of adult rats and by using behavioral tests. After intrathecal administration of TNF-alpha in adult rats, spontaneous hind paw withdrawal behavior and thermal hyperalgesia were rapidly induced (approximately 30 min), while mechanical allodynia slowly developed. ⋯ Moreover, the frequencies, but not the amplitudes, of spontaneous and miniature EPSCs and spontaneous inhibitory postsynaptic currents were significantly increased by bath-applied TNF-alpha in most of the SG neurons. The effects of TNF-alpha on Adelta/C fiber-evoked monosynaptic and polysynaptic or spontaneous EPSCs were significantly blocked by 5 microM TNF-alpha antagonist that inhibits TNF-alpha binding to its type 1 receptor (TNFR1). Because this study also found high protein expression of TNFR1 in the adult dorsal root ganglion and no change of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) induced whole-cell currents by TNF-alpha, we conclude that presynaptic TNFR1 at Adelta/C primary afferent terminals contributes to the rapid alteration of synaptic transmission in the spinal SG, and the development of abnormal pain hypersensitivity by exogenous TNF-alpha.
-
In women, clinical studies suggest that pain syndromes such as irritable bowel syndrome and interstitial cystitis, which are associated with visceral hyperalgesia, are often comorbid with endometriosis and chronic pelvic pain. One of the possible explanations for this phenomenon is viscerovisceral cross-sensitization, in which increased nociceptive input from an inflamed pelvic organ sensitizes neurons that receive convergent input to the same dorsal root ganglion (DRG) from an unaffected visceral organ. Nociception induces up-regulation of cellular mechanisms such as phosphorylated extracellular signal-regulated kinase (pERK) and substance P (SP), neurotransmitters associated with induced pain sensation. ⋯ Uterine inflammation increased the number of pERK- and SP-immunoreactive DRG neurons innervating specifically colon, or innervating specifically uterus, and those innervating both organs. These results suggest that a localized inflammation activates primary visceral afferents, regardless of whether they innervate the affected organ. This visceral sensory integration in the DRG may underlie the observed comorbidity of female pelvic pain syndromes.
-
Comparative Study
Age-dependent time course of cerebral brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 in APP23 transgenic mice.
Neurotrophins, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3), have repeatedly been shown to be involved in the pathophysiology of Alzheimer's disease (AD). Recent studies have claimed that these neurotrophic factors are important tools for therapeutic intervention in neurodegenerative diseases. So far, little is known about the age- and disease-modulated time course of cerebral neurotrophins. ⋯ Hippocampus, olfactory bulb, and cerebellum (except NT-3) did not show substantial age- or genotype-related regulation of neurotrophins. In the sciatic nerve, BDNF and NGF levels are increased in5-month-old APP23 mice and decrease with age to control levels. In conclusion, APP23 mice show a genotype-dependent increase of cortical BDNF and NGF that is highly correlated with amyloid concentrations and may reflect an amyloid-related glia-derived neurotrophin secretion or an altered axonal transport of these neurotrophic factors.