Neuroscience
-
In anaesthetized rats, recordings were made from nociceptive dorsal horn neurons with convergent input from the skin and deep somatic tissues. The results of a previous study have shown that in these neurons the input from deep nociceptors is subjected to a much stronger tonic descending inhibition than is the input from cutaneous nociceptors. The aim of the present study was to find out whether at supraspinal levels opioidergic, adrenergic, or serotoninergic transmitters are involved in this quite specific inhibition of deep nociception. ⋯ In contrast, supraspinal adrenergic and serotoninergic mechanisms do not appear to contribute to the tonic inhibition. The data confirm and extend previous results which suggested that a particular portion of the descending antinociceptive system may act mainly on the input from deep nociceptors. Pharmacologically, this particular portion seems to be opioidergic in nature.
-
In an earlier report, we demonstrated that subcutaneous injection of formalin in the rat hindpaw evokes a characteristic pattern of expression of the fos protein product of the c-fos protooncogene in spinal cord neurons, and that systemic morphine reversed the fos-like immunoreactivity in a dose-dependent, naloxone-reversible manner. The present study compared the effects of intracerebroventricular administration of the mu-selective opioid ligand [D-Ala2, NMe-Phe4, Gly-ol5] enkephalin, on the pain behavior and spinal cord fos-like immunoreactivity produced by subcutaneous formalin. Formalin injection produced a biphasic pain behavioral response which lasted about 1 h. ⋯ Since the potencies for inhibition of pain behavior and fos-like immunoreactivity in the neck and ventral horn were comparable, these data suggest that the activity of neurons in these regions is directly related to the pain behavior produced by nociceptive inputs. Finally, we found that bilateral, midthoracic lesions of the dorsal part of the lateral funiculus blocked both the antinociception and fos suppression produced by intracerebroventricular [D-Ala2, NMe-Phe4, Gly-ol5]enkephalin. These results are consistent with the hypothesis that the analgesic action of supraspinally administered opiates results from an increase in descending inhibitory controls that regulate the firing of subpopulations of spinal cord nociresponsive neurons.
-
A novel mechanism for regulating dopamine activity in subcortical sites and its possible relevance to schizophrenia is proposed. This hypothesis is based on the regulation of dopamine release into subcortical regions occurring via two independent mechanisms: (1) transient or phasic dopamine release caused by dopamine neuron firing, and (2) sustained, "background" tonic dopamine release regulated by prefrontal cortical afferents. Behaviorally relevant stimuli are proposed to cause short-term activation of dopamine cell firing to trigger the phasic component of dopamine release. ⋯ In this way, tonic dopamine release would set the background level of dopamine receptor stimulation (both autoreceptor and postsynaptic) and, through homeostatic mechanisms, the responsivity of the system to dopamine in these sites. In schizophrenics, a prolonged decrease in prefrontal cortical activity is proposed to reduce tonic dopamine release. Over time, this would elicit homeostatic compensations that would increase overall dopamine responsivity and thereby cause subsequent phasic dopamine release to elicit abnormally large responses.
-
Recordings were made from neurons in subnucleus reticularis dorsalis of the rat. Two populations of neurons could be distinguished: those with total nociceptive convergence which were driven by activating A delta- and C-fibers from any part of the body and those with partial nociceptive convergence which were driven by activating A delta-fibers from any part of the body or C-fibers from some, mainly contralateral, regions. The effects on subnucleus reticularis dorsalis neurons of manual acupuncture, performed by a traditional Chinese acupuncturist at the "Renzhong", "Sousanli", "Changqiang", and "Zusanli" acupoints and at a non-acupoint next to "Zusanli", were studied. ⋯ No differences were found between the capacities to activate subnucleus reticularis dorsalis neurons of the "Zusanli" point and the adjacent non-acupoint, no matter whether these were stimulated ipsi- or contralaterally; this suggests a lack of topographical specificity in the activation of these neurons. Since subnucleus reticularis dorsalis neurons are activated exclusively or preferentially by noxious inputs, it is concluded that the signals elicited by manual acupuncture travel through pathways responsible for the transmission of nociceptive information. Since acupuncture, a manoeuvre which is known to elicit widespread extrasegmental antinociceptive effects, activates subnucleus reticularis dorsalis neurons which, anatomically, send dense projections to the dorsal horn at all levels of the spinal cord, we would suggest that this structure may be involved not only in signalling pain but also in modulating pain by means of spino-reticulo-spinal feed-back mechanisms.
-
Comparative Study
Adenosine A2 receptors: selective localization in the human basal ganglia and alterations with disease.
Adenosine A2 receptors were labeled and visualized by autoradiography in tissue sections of the human brain using the A2-selective agonist ligand [3H](2-p-(2-carboxyethyl)phenylamino)-5'-N-carboxamidoadenosine (CGS 21680). The binding of this ligand was of high affinity, reversible, and was blocked by adenosine A2 agents. Autoradiographic mapping of adenosine A2 sites revealed them to be exclusively restricted to the caudate nucleus, putamen, nucleus accumbens, olfactory tubercle and the lateral segment of the globus pallidus. ⋯ In contrast, density values of A2 sites were dramatically decreased, compared to control values, in the basal ganglia of patients with Huntington's chorea. Similar losses of A2 receptors were observed in the guinea-pig striatum after local application of quinolinic acid while lesioning of the dopaminergic neurons was without effect. All these results taken together suggest that adenosine A2 receptors are localized on striatal output neurons which degenerate in Huntington's chorea.