Neuroscience
-
The topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and lateral portions of the bed nucleus of the stria terminalis and central amygdaloid nucleus was investigated, in the rat, using the retrograde transport of wheat germ agglutinin-conjugated horseradish peroxidase. Although the caudatoputamen and nucleus accumbens are the principal components of the striatum, there is evidence that lateral portions of the bed nucleus of the stria terminalis and central amygdaloid nucleus may be striatal-like structures. The basolateral nucleus was the main source of amygdaloid fibers to all of these structures. ⋯ The principal striatal projection of the caudal basolateral nucleus was to the medial nucleus accumbens. Amygdaloid labeling produced by injections into the medial nucleus accumbens was very similar to that seen with injections into the lateral portions of the bed nucleus of the stria terminalis and central amygdaloid nucleus. The retrograde amygdaloid labeling seen in this investigation, when compared to labeling seen with cortical injections in previous studies, suggests that specific amygdaloid domains project to particular cortical areas as well as to the principal striatal targets of the same areas.
-
The organization of connections between the amygdala, prefrontal cortex and striatum was studied using anterograde and retrograde tract tracing techniques in the rat. The anterograde transport of Phaseolus vulgaris leucoagglutinin and wheat germ agglutinin conjugated to horseradish peroxidase was used to examine the striatal projections of the prefrontal cortex. These studies revealed that the prelimbic area of the medial prefrontal cortex projects mainly to the medial part of the striatum, whereas the dorsal agranular insular area of the lateral prefrontal cortex projects mainly to the ventrolateral part of the striatum. ⋯ The rostral pole and lateral portions of the basolateral nucleus project to both the lateral prefrontal cortex and its associated lateral striatal region. Many neurons in the basolateral amygdaloid nucleus, and to a lesser extent other amygdaloid nuclei, were double-labeled in these experiments, indicating that these cells send collaterals to both the prefrontal cortex and striatum. These findings indicate that discrete areas of the amygdala, and in some cases individual amygdaloid neurons, can modulate information processing in the first two links of distinct cortico-striato-pallidal systems arising in the medial and lateral prefrontal cortex.