Neuroscience
-
Excitotoxins are thought to kill neurons while sparing afferent fibers and axons of passage. The validity of this classical conclusion has recently been questioned by the demonstration of axonal demyelination. In addition, axons are submitted to a profound alteration of their glial environment. ⋯ Demyelination occurs over the first weeks, accompanying the loss of astrocytes and oligodendrocytes. Axonal ensheathment and remyelination takes place in a second period, associated with the reappearance of oligodendrocytes and recruitment of numerous Schwann cells, while reactive astrocytes appear in the tissue at a slightly later time. Over the following months, astrocytes occupy a greater proportion of the neuron-depleted territory and other elements decrease in number.(ABSTRACT TRUNCATED AT 400 WORDS)
-
Synaptic overflow of dopamine in the striatum has been investigated during electrical stimulation of the medial forebrain bundle in anesthetized rats. Dopamine has been detected with Nafion-coated, carbon-fiber electrodes used with fast-scan voltammetry. In accordance with previous results, dopamine synaptic overflow is a function of the stimulation frequency and the anatomical position of the carbon-fiber electrode. ⋯ The absence of diffusional effects in the measurement locations means that the constants determined with the electrode are those operant inside intact striatal tissue during stimulated overflow. These values are then extrapolated to the case where a single neuron fires alone. The extrapolation shows that while the transient concentration of dopamine may be high (200 nM) at the interface of the synapse and the extrasynaptic region, it is normally very low (< 6 nM) in the bulk of extracellular fluid.