Neuroscience
-
Supraspinal afferents to the pontine micturition center, Barrington's nucleus, were investigated in the rat by visualization of the retrograde tracer, cholera-toxin subunit B, in neurons following iontophoretic injection into Barrington's nucleus. Tissue sections from five rats with injections primarily localized in Barrington's nucleus revealed numerous retrogradely labeled neurons throughout all rostrocaudal levels of the periaqueductal gray (particularly its ventrolateral division), in the lateral hypothalamic area (particularly medial to the fornix), and in the medial preoptic nucleus. Retrogradely labeled neurons were also consistently found in the nucleus of the solitary tract, in the vicinity of the lateral reticular nucleus, nucleus paragigantocellularis, parabrachial nucleus, Kölliker-Fuse nucleus, cuneiform nucleus, raphe nucleus and zona incerta. ⋯ The present results suggest that Barrington's nucleus in the rat receives neuronal inputs from brainstem nuclei as well as from forebrain limbic structures including hypothalamic nuclei, the medial preoptic nucleus, and cortical areas involved in fluid balance or blood pressure regulation. In light of the role of Barrington's nucleus in micturition, the integration of these various inputs may be important for co-ordinating urinary function with fluid and cardiovascular homeostasis. Additionally, as neurons in Barrington's nucleus are immunoreactive for the stress-related neurohormone, corticotropin-releasing hormone, these diverse inputs may regulate stress-related functions of this nucleus.
-
The prenatal and postnatal ontogeny of D1A and D2 dopamine receptors was assessed by in situ hybridization of messenger RNAs encoding the receptors and by radioligand binding autoradiography. On gestational day 14, signals for D1A and D2 dopamine receptor messages were observed in selected regions in ventricular and subventricular zones which contain dividing neuroblasts, and in intermediate zones that contain maturing and migrating neurons. Specifically, D1A and D2 dopamine receptor message was observed in the developing caudate-putamen, olfactory tubercle, and frontal, cingulate, parietal and insular cortices. ⋯ At birth, expression of messenger RNA for both dopamine receptor subtypes in the striatum approximated that seen in mature rats. In contrast, D1A and D2 receptor binding, measured with [3H]SCH-23390 and [3H]raclopride, respectively, was low at birth and progressively increased to reach adult levels between days 14 and 21. The in situ hybridization data showing early prenatal expression of messenger RNA for the D1A and D2 dopamine receptors are consistent with the hypothesis that these receptors have a regulatory role in neuronal development.(ABSTRACT TRUNCATED AT 400 WORDS)