Neuroscience
-
It has recently been observed that nerve growth factors induces the rapid onset of thermal hyperalgesia, and the more delayed onset of mechanical hyperalgesia when administered to mature rats. Though several mechanisms have been proposed to explain this phenomenon, it is still not well understood. Previous studies have shown that nerve growth factor can directly excite nociceptive sensory ganglion neurons in culture via activation of kappa excitatory opioid receptors. ⋯ Opiate antagonists and anti-nerve growth factor antibody both interfered with Freund's adjuvant-induced inflammatory hyperalgesia. Altogether, these observations suggest that activation of excitatory opioid receptors plays a role in mediating nerve growth factor-induced hyperalgesia and that, in turn, nerve growth factor contributes to the hyperalgesia associated with inflammatory states. Since opioid receptor antagonists are well tolerated clinically, they may be useful for patients receiving nerve growth factor as part of ongoing trials of the factor in peripheral neuropathy.
-
Recent neuroanatomical data suggest that the axons and terminals of serotonergic neurons of the dorsal and median raphe nuclei are morphologically and pharmacologically distinct. Here we attempted to establish a functional in vivo model of serotonergic terminals derived from these nuclei, and then carry out a preliminary comparison of their physiological and pharmacological properties. Brain microdialysis was used to monitor extracellular 5-hydroxytryptamine in the hippocampus (dorsal and median raphe innervation) and frontal cortex (preferential dorsal raphe innervation) of the anaesthetized rat. ⋯ In summary, our data show that electrical stimulation of the dorsal or median raphe nucleus releases 5-hydroxytryptamine in a regionally specific manner (hippocampus versus frontal cortex), suggesting that serotonergic nerve terminals of the dorsal and median raphe pathways were being activated selectively. Using this model, we found no differences in the responsiveness of dorsal and median raphe pathways to a specific set of physiological and pharmacological manipulations. In particular, our data suggest that the neurotoxic action of p-chloroamphetamine may not be targeted solely on serotonergic axons and terminals of the dorsal raphe nucleus but includes those of the median raphe nucleus.