Neuroscience
-
Spinal cord projections from transected sciatic nerves treated with different neurotrophins were investigated in the adult rat following injections of choleragenoid into the proximal stump of the injured nerve. Transganglionically transported choleragenoid labelled primary afferent fibres in all spinal cord dorsal horn laminae except the outer part of lamina II (II(o)), which is almost devoid of labelling. Transection of the sciatic nerve, however, resulted in intense transganglionic choleragenoid labelling in lamina II(o) and in lamina I. ⋯ An axotomy-induced depletion of substance P-like immunoreactivity was seen from eight days' survival and onwards, whereas on the nerve growth factor-treated side a clearcut substance P depletion was not observed until 32 days. Brain-derived neurotrophic factor, neurotrophin-3 and cytochrome C had no detectable effects on the distribution of choleragenoid labelling or substance P-like immunoreactivity in the dorsal horn following sciatic nerve transection. In conclusion, peripheral nerve injury-induced expansion of primary afferent choleragenoid labelling in the spinal cord dorsal horn is counteracted by treating the axotomized nerve with nerve growth factor.
-
Although the importance of the rostral ventromedial medulla in pain modulation is generally accepted, the recognition that it can exert both pain facilitating and pain inhibiting influences, and that its constituent neuronal population is physiologically and pharmacologically heterogeneous, is relatively recent. A class of neuron which may be a source of facilitating influences from the rostral ventromedial medulla has been identified in electrophysiological experiments. These neurons, termed "on-cells," are characterized by a sudden burst of activity beginning just before nocifensive reflexes. ⋯ Spontaneous activity of other medullary neurons was unchanged. These data demonstrate that release of an endogenous excitatory amino acid neurotransmitter is necessary for the activation of on-cells that is associated with nocifensive reflexes. In contrast, these receptors evidently play a much less significant role in maintaining the ongoing activity of any cell class in the rostral ventromedial medulla in lightly anaesthetized rats.
-
Endogenous excitotoxins have been implicated in the degeneration of dopaminergic neurons in the substantia nigra compacta of patients with Parkinson's disease. One such agent quinolinic acid is an endogenous excitatory amino acid receptor agonist. This study examined whether an increased level of endogenous kynurenic acid, an excitatory amino acid receptor antagonist, can protect nigrostriatal dopamine neurons against quinolinic acid-induced excitotoxic damage. ⋯ Tyrosine hydroxylase immunohistochemical assessment of the substantia nigra confirmed quinolinic acid-induced neuronal cell loss and the ability of nicotinylalanine in combination with kynurenine and probenecid to protect neurons from quinolinic acid-induced toxicity. The present study demonstrates that increases in endogenous kynurenic acid can prevent the loss of nigrostriatal dopaminergic neurons resulting from a focal infusion of quinolinic acid or N-methyl-D-aspartate. The strategy of neuronal protection by increasing the brain kynurenic acid may be useful in retarding cell loss in Parkinson's disease and other neurodegenerative diseases where excitotoxic mechanisms have been implicated.
-
We have previously defined three types of tegmental pedunculopontine nuclei neurons based on their electrophysiological characteristics: Type I neurons characterized by low-threshold Ca2+ spikes, Type II neurons which displayed a transient outward current (A-current), and Type III neurons having neither low-threshold spikes nor A-current [Kang Y. and Kitai S. T. (1990) Brain Res. 535, 79-95]. In this report, ionic mechanisms underlying repetitive firing of Type I (n=15) and Type II (n=69) neurons were studied in in vitro slice preparations. ⋯ These data suggest an involvement of N- and L-type Ca2+ channels in the generation of the high-threshold oscillation and the high-threshold Ca2+ spike, respectively. The results indicate that a persistent Na+ conductance plays a crucial role in the subthreshold membrane oscillation, which underlies spontaneous repetitive firing in Type I neurons. On the other hand, in addition to a persistent Na+ conductance for subthreshold membrane oscillation, a voltage-dependent Ca2+ conductance with Ca2+-dependent K+ conductance (for the high-threshold oscillation) may be responsible for rhythmic firing of Type II neurons.
-
Chronic inflammatory conditions produce a state of hyperalgesia which is evident from a few hours to days after administration of an inflammatory stimulus. The molecular mechanisms involved in the initiation of hyperalgesia are not well understood and in this study we have investigated the role of prostaglandins in this process in the rat. Unilateral intraplantar injection of Freund's complete adjuvant produces an immediate localized swelling (oedema) with the development of altered pain responses in the ipsilateral paw such as a reduced threshold to noxious stimuli (hyperalgesia) and lowered thresholds such that normally innocuous stimuli produce a pain response (allodynia). ⋯ The marked increase in cyclooxygenase-2 messenger RNA in the lumbar spinal cord following intraplantar Freund's complete adjuvant suggests that the cyclooxygenase enzyme and its product may have a role in the adaptive response that occurs in the lumbar spinal cord during a peripheral inflammatory reaction. Pharmacological analysis reveals that prostaglandins are directly involved in the development of allodynia. However, these studies show that the development of mechanical hyperalgesia does not require the production of prostaglandins indicating that more than one pathway mediates the altered pain responses associated with a peripheral inflammatory lesion.