Neuroscience
-
A new approach combining fast-scan cyclic voltammetry with iontophoretic dopamine delivery was used in freely behaving rats to evaluate the time-course of dopamine uptake inhibition in nucleus accumbens induced by intravenous cocaine at a dose (1.0mg/kg) known to maintain self-administration behavior. Cocaine significantly increased the decay time of the dopamine response without altering its magnitude or time to peak. An increase in decay time was evident at 2 min, peaked at 6 min (+87%), and decreased to baseline at 18 min after a single cocaine injection. ⋯ Our data provide direct evidence for a phasic change in dopamine uptake induced by intravenous cocaine under behaviorally relevant conditions. The relatively slow and gradual development of dopamine uptake inhibition, which peaks at times when behaving rats self-inject cocaine, is inconsistent with the suggested role of this mechanism in the acute rewarding (euphoric) effects of self-injected cocaine, but supports its role in the activational and motivational aspects of drug-seeking and drug-taking behavior. Because intravenous cocaine enters the brain rapidly and peaks in neural tissue (1-2 min) long before it effectively inhibits dopamine uptake (6 min), it appears that some of the acute psychoemotional ("rush"), behavioral, autonomic, and neuronal effects of this drug, which are apparently resistant to dopamine receptor blockade, are mediated via rapid central or peripheral mechanisms independent of monoamine uptake.
-
Acute neuropathology following experimental traumatic brain injury results in the rapid necrosis of cortical tissue at the site of injury. This primary injury is exacerbated in the ensuing hours and days via the progression of secondary injury mechanism(s) leading to significant neurological dysfunction. Recent evidence from our laboratory demonstrates that the immunosuppressant cyclosporin A significantly ameliorates cortical damage following traumatic brain injury. ⋯ The findings demonstrate that the neuroprotection afforded by cyclosporin A is dose-dependent and that a therapeutic window exists up to 24h post-injury. Furthermore, the optimal cyclosporin dosage and regimen markedly reduces disruption of the blood-brain barrier acutely following a cortical contusion injury, and similarly affords significant neuroprotection following fluid percussion injury. These findings clearly suggest that the mechanisms responsible for tissue necrosis following traumatic brain injury are amenable to pharmacological intervention.
-
The aim of this investigation was to determine whether murine models of inflammatory, neuropathic and cancer pain are each characterized by a unique set of neurochemical changes in the spinal cord and sensory neurons. All models were generated in C3H/HeJ mice and hyperalgesia and allodynia behaviorally characterized. A variety of neurochemical markers that have been implicated in the generation and maintenance of chronic pain were then examined in spinal cord and primary afferent neurons. ⋯ However, in this cancer-pain model, changes including massive astrocyte hypertrophy without neuronal loss, increase in the neuronal expression of c-Fos, and increase in the number of dynorphin-immunoreactive neurons were observed in the spinal cord, ipsilateral to the limb with cancer. These results indicate that a unique set of neurochemical changes occur with inflammatory, neuropathic and cancer pain in C3H/HeJ mice and further suggest that cancer induces a unique persistent pain state. Determining whether these neurochemical changes are involved in the generation and maintenance of each type of persistent pain may provide insight into the mechanisms that underlie each of these pain states.
-
In the symptomatic treatment of mild to moderately severe dementia associated with Alzheimer's disease, donepezil (E2020) has been introduced for the inhibition of acetylcholinesterase activity in the human brain. However, there is no morphological evidence as to how this chemical agent affects the acetylcholinesterase-positive structures in the various areas of the human and the rat CNS. This study demonstrates by histochemical means that donepezil exerts a dose-dependent inhibitory effect in vitro on acetylcholinesterase activity. ⋯ These histochemical results provide the first morphological evidence that, under in vitro circumstances, donepezil is not a general acetylcholinesterase inhibitor in the CNS, but rather selectively affects the different brain areas and, within these, the cholinoceptive and cholinergic structures. The acetylcholinesterase staining in the nerve fibers (innervating the intracerebral blood vessels of the human brain and the extracerebral blood vessels of the rat brain) and at the neuromuscular junction in the diaphragm and gastrocnemius muscle of rat, was also inhibited dose dependently by donepezil. It is concluded that donepezil may be a valuable tool with which to influence both the pre- and the postsynaptic acetylcholinesterase-positive structures in the human and rat central and peripheral nervous systems.
-
We showed recently that conditioned fear to context induces Fos expression in the ventrolateral periaqueductal gray [Neuroscience (1997) 78, 165-177]. Neurons in this region are thought to play an important role in the expression of freezing during conditioned fear. To test the possibility that this activation comes directly from the amygdala, we looked at changes in Fos expression after a unilateral blockade of the ventral amygdalofugal pathway with lidocaine. ⋯ Fos expression remained low on both sides in the non-fear-conditioned animals injected with lidocaine. Finally, although freezing was only partly reduced in the conditioned animals unilaterally injected with lidocaine, it was significantly correlated to the ipsilateral reduction in Fos expression. This study provides direct evidence that the projection from the central nucleus of the amygdala to the ventrolateral periaqueductal gray is activated during fear and that it contributes to the Fos response of the ventrolateral periaqueductal gray.