Neuroscience
-
Whole-cell patch-clamp techniques were used to study the effects of nerve growth factor on voltage-dependent potassium conductance in normal and axotomized identified large cutaneous afferent dorsal root ganglion neurons (48-50 micrometer diameter) many of which probably give rise to myelinated Abeta fibers. K-currents were isolated by blocking Na- and Ca-currents with appropriate ion replacement and channel blockers. Separation of current components was achieved on the basis of response to variation in conditioning voltage. ⋯ Nerve crush, which allows regeneration to peripheral targets and exposure of the regenerating nerve to the distal nerve segment, resulted in a small reduction in sustained K-current but no reduction in transient A-current compared to controls. Levels of transient A-current and sustained K-current were maintained at control levels after nerve growth factor treatment. These results indicate that the large reduction in transient A-current, and in sustained K-current, observed in cutaneous afferent cell bodies after nerve ligation is prevented by application of nerve growth factor.
-
Conventional uptake of neurotrophins takes place at axon terminals via specific receptors, and is followed by retrograde transport. Recent studies demonstrated that, with the exception of nerve growth factor, other neurotrophins may be delivered anterogradely to the region containing the receptor expressing neurons. In this study we used a triple labeling method that combines retrograde tract tracing, in situ hybridization and immunocytochemistry to examine whether non-principal cells projecting from the hippocampus to the septum synthesize nerve growth factor. ⋯ Hippocamposeptal GABAergic cells are reciprocally connected with the medial septum, thus they are in a key position to regulate nerve growth factor release as a function of the activity level in the septohippocampal system. Furthermore, our results raise the intriguing possibility that nerve growth factor may be transported also in an anterograde manner. Regardless of the direction of transport, the presence of nerve growth factor in hippocamposeptal cells suggests that long distance fast synaptic mechanisms and slow neurotrophin action are coupled in these neurons.
-
Effects of cholinergic agents on synaptic transmission and plasticity were examined in entorhinal cortex and hippocampus. Bath application of carbachol (0.25-0.75 microM) induced transient depression of field potential responses in all cases tested (24/24 in layer III of medial entorhinal cortex slices and 24/24 in CA1 of hippocampal slices; 11.0+/-1.9% and 7.8+/-2.5%, respectively) and long-lasting potentiation in some cases (4/24 in entorhinal cortex and 12/24 in hippocampus; 33.7+/-3.7% and 32.1+/-9.9%, respectively, in successful cases). Carbachol (0.5 microM) induced transient depression, but not long-lasting potentiation, of N-methyl-D-aspartate receptor-mediated responses in entorhinal cortex. ⋯ Long-term potentiation could be induced in the presence of 10 microM atropine by theta burst stimulation. The magnitude was significantly lower (15.2+/-5.2%, n=9) compared with control (37.2+/-6.1%, n=8) in entorhinal cortex, however. These results demonstrate similar, but not identical, cholinergic modulation of synaptic transmission and plasticity in entorhinal cortex and hippocampus.
-
Acute neuropathology following experimental traumatic brain injury results in the rapid necrosis of cortical tissue at the site of injury. This primary injury is exacerbated in the ensuing hours and days via the progression of secondary injury mechanism(s) leading to significant neurological dysfunction. Recent evidence from our laboratory demonstrates that the immunosuppressant cyclosporin A significantly ameliorates cortical damage following traumatic brain injury. ⋯ The findings demonstrate that the neuroprotection afforded by cyclosporin A is dose-dependent and that a therapeutic window exists up to 24h post-injury. Furthermore, the optimal cyclosporin dosage and regimen markedly reduces disruption of the blood-brain barrier acutely following a cortical contusion injury, and similarly affords significant neuroprotection following fluid percussion injury. These findings clearly suggest that the mechanisms responsible for tissue necrosis following traumatic brain injury are amenable to pharmacological intervention.
-
We studied the effects of reversible cooling on synaptic transmission in slices of rat visual cortex. Cooling had marked monotonic effects on the temporal properties of synaptic transmission. It increased the latency of excitatory postsynaptic potentials and prolonged their time-course. ⋯ Paired-pulse facilitation was less at lower temperatures, indicating that synaptic dynamics are different at room temperature as compared with physiological temperatures. These results have important implications for extrapolating in vitro data obtained at room temperatures to higher temperatures. The data also emphasize that inactivation by cooling might be a useful tool for studying interactions between brain regions, but the data recorded within the cooled area do not allow reliable conclusions to be drawn about neural operations at normal temperatures.