Neuroscience
-
The influence of embryonic mesencephalic, striatal and mesencephalic/striatal co-grafts on amphetamine- and apomorphine-induced rotation behaviour was assessed in a rat model of multiple system atrophy/striatonigral degeneration type using dopamine D1 ([3H]SCH23390) and D2 ([3H]spiperone) receptor and dopamine re-uptake ([3H]mazindol) autoradiography. Male Wistar rats subjected to a sequential unilateral 6-hydroxydopamine lesion of the medial forebrain bundle followed by a quinolinic acid lesion of the ipsilateral striatum were divided into four treatment groups, receiving either mesencephalic, striatal, mesencephalic/striatal co-grafts or sham grafts. Amphetamine- and apomorphine-induced rotation behaviour was recorded prior to and up to 10 weeks following transplantation. 6-Hydroxydopamine-lesioned animals showed ipsiversive amphetamine-induced and contraversive apomorphine-induced rotation behaviour. ⋯ We propose that the partial reversal of amphetamine-induced rotation asymmetry in double-lesioned rats receiving mesencephalic or mesencephalic/striatal co-grafts reflects non-synaptic graft-derived dopamine release. The changes of apomorphine-induced rotation following transplantation are likely to reflect a complex interaction of graft- and host-derived striatal projection pathways and basal ganglia output nuclei. Further studies in a larger number of animals are required to determine whether morphological parameters and behavioural improvement in the neurotransplantation multiple system atrophy rat model correlate.
-
PSD-95/SAP90, a molecular scaffold protein, attaches the N-methyl-D-aspartate receptor to cellular signaling pathways through PSD-95/DLG/Z0-1 domain interactions at neuronal synapses.(5,9) This suggests that PSD-95/SAP90 might be involved in many physiological and pathophysiological actions triggered via the N-methyl-D-aspartate receptor in the central nervous system. Here, we present evidence that suppression of the expression of PSD-95/SAP90 in the spinal cord significantly attenuated facilitation of the tail-flick reflex triggered through N-methyl-D-aspartate receptor activation but not baseline tail-flick reflex latency. ⋯ It is indicated that activation of the N-methyl-D-aspartate receptor in spinal hyperalgesia results in association of the N-methyl-D-aspartate receptor with PSD-95/SAP90 and that PSD-95/SAP90 is required for noxious thermal hyperalgesia triggered via the N-methyl-D-aspartate receptor at the spinal cord level. The present findings may provide novel insights into the mechanisms for persistent sensitization of the somatosensory system.
-
Several lines of evidence have shown a role for the nitric oxide/cyclic guanosine monophosphate signaling pathway in the development of spinal hyperalgesia. However, the roles of effectors for cyclic guanosine monophosphate are not fully understood in the processing of pain in the spinal cord. The present study showed that cyclic guanosine monophosphate-dependent protein kinase Ialpha but not Ibeta was localized in the neuronal bodies and processes, and was distributed primarily in the superficial laminae of the spinal cord. ⋯ Moreover, cyclic guanosine monophosphate-dependent protein kinase Ialpha protein expression was dramatically increased in the lumbar spinal cord 96 h after injection of formalin into a hindpaw, which occurred mainly in the superficial laminae on the ipsilateral side of a formalin-injected hindpaw. This up-regulation of cyclic guanosine monophosphate-dependent protein kinase Ialpha expression was completely blocked not only by a neuronal nitric oxide synthase inhibitor, 7-nitroindazole, and a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, but also by an N-methyl-D-aspartate receptor antagonist, dizocilpine maleate (MK-801). The present results indicate that noxious stimulation not only initially activates but also later up-regulates cyclic guanosine monophosphate-dependent protein kinase Ialpha expression in the superficial laminae via an N-methyl-D-aspartate-nitric oxide-cyclic guanosine monophosphate signaling pathway, suggesting that cyclic guanosine monophosphate-dependent protein kinase Ialpha may play an important role in the central mechanism of formalin-induced inflammatory hyperalgesia in the spinal cord.
-
The role of endogenous opioid systems in the analgesic response to exogenous opiates remains controversial. We previously reported that mice lacking the peptide neurotransmitter beta-endorphin, although unable to produce opioid-mediated stress-induced antinociception, nevertheless displayed intact antinociception after systemic administration of the exogenous opiate morphine. Morphine administered by a peripheral route can activate opioid receptors in both the spinal cord and brain. ⋯ In contrast, the mutant mice were less sensitive to spinal (i.t.) injection of these same drugs. Quantitative receptor autoradiography revealed no differences between genotypes in the density of mu, delta, or kappa opioid receptor binding sites in either the spinal cord or pain-relevant supraspinal areas. Thus we report that the absence of a putative endogenous ligand for the mu-opioid receptor results in opposite changes in morphine sensitivity between discrete areas of the nervous system, which are not simply caused by changes in opioid receptor expression.
-
The mechanism of spinal tolerance to the analgesic effects of opiates is unclear at present. We have reported previously that calcitonin gene-related peptide-like immunoreactivity was significantly increased in primary afferents of the spinal dorsal horn during the development of morphine tolerance, suggesting that changes in the level of pain-related neuropeptides in dorsal root ganglion neurons may be involved [Menard D. P. et al. (1996) J. ⋯ These data suggest that repeated exposure to morphine rather selectively increases calcitonin gene-related peptide- and substance P-like immunoreactivity in cultured dorsal root ganglion neurons. Moreover, the sensitivity to morphine-induced changes is greater in cultured dorsal root ganglion neurons from 10- compared to three-month-old rats. Hence, cultured dorsal root ganglion neurons can provide a model to investigate the cellular and molecular mechanisms underlying alterations in neuropeptide levels following repeated exposure to opiates and their relevance to the development of opioid tolerance.