Neuroscience
-
Partial injury of the rat sciatic nerve elicits a variety of characteristic chemical, electrophysical and anatomical changes in primary sensory neurons and constitutes a physiologically relevant model of neuropathic pain. To elucidate molecular mechanisms that underlie the physiology of neuropathic pain, we have used messenger RNA differential display to identify genes that exhibit increased ipsilateral expression in L4/5 dorsal root ganglia, following unilateral partial ligation of the rat sciatic nerve. ⋯ Induction of nerve injury-associated kinase expression in dorsal root ganglia in the rat neuropathic pain model was confirmed by quantitative reverse transcription-polymerase chain reaction, and RNA in situ hybridization analysis revealed enhanced levels of nerve injury-associated kinase within neurons. Together, our data implicate nerve injury-associated kinase as a novel upstream component of an intracellular signalling cascade that is up-regulated in dorsal root ganglia neurons in response to sciatic nerve injury.
-
The effects of different hormone replacement regimens on basal forebrain cholinergic function were examined by measuring changes in choline acetyltransferase activity and high affinity choline uptake in adult, ovariectomized, rats. Increases in choline acetyltransferase activity were detected in the frontal cortex (20. 1%) and olfactory bulbs (30.4%) following two weeks, but not four weeks, of repeated treatment with estrogen plus progesterone. Increases in high affinity choline uptake were detected in the frontal cortex (39.5-55.1%), hippocampus (34.9-48.9%), and olfactory bulbs (29.9%) after two weeks, but not four weeks, of either continuous estrogen administration, repeated progesterone administration, or repeated treatment with estrogen plus progesterone. ⋯ The findings demonstrate that short-term treatment with estrogen and/or progesterone can significantly enhance cholinergic function within specific targets of the basal forebrain cholinergic projections. Most important is the fact that the effects varied considerably according to the manner and regimen of hormone replacement and did not persist with prolonged treatment. These findings could have important implications for the effective use of hormone replacement strategies in the prevention and treatment of Alzheimer's disease and age-related cognitive decline in women.
-
Corticotropin releasing factor is a 41 amino acid peptide that is present in afferent systems that project to the cerebellum. In the adult, this peptide modulates the activity of Purkinje cells by enhancing their responsiveness to excitatory amino acids. Two different types of corticotropin releasing factor receptors, designated type 1 and type 2, have been identified. ⋯ Finally, numerous elongated processes within the white matter, which are likely to be axons, also are type 2 immunoreactive. These data indicate that both types of corticotropin releasing factor receptor are present in the mouse cerebellum. However, the unique distribution of the two types of receptor strongly suggests a differential role for corticotropin releasing factor in modulating the activity of neurons, axons and glial cells via cell-specific ligand-receptor interactions.
-
Expression of glycoprotein 130 and the related receptors, including interleukin-6 receptor and leukemia inhibitory factor receptor, was examined in the murine cerebellum at the protein level. Western blot analysis revealed that interleukin-6 receptor, leukemia inhibitory factor receptor and glycoprotein 130 were expressed in the murine cerebellum. Immunoreactivities for interleukin-6 receptor, leukemia inhibitory factor receptor and glycoprotein 130 were strongly localized on the cell body of Purkinje cells, indicating that both interleukin-6 and leukemia inhibitory factor could act directly on Purkinje cells in murine adult mice. ⋯ Immunoreactivity for the interleukin-6 receptor was also detected in the cytoplasm of Purkinje cells. Injection of a murine hemopoietic cell line, FDC-P1 cells, transfected with the complementary DNA encoding the leukemia inhibitory factor led to a reduction in calbindin-positive dendrites of the Purkinje cells. The present results suggest that the leukemia inhibitory factor affects cerebellar functions through Purkinje cells.