Neuroscience
-
A new approach combining fast-scan cyclic voltammetry with iontophoretic dopamine delivery was used in freely behaving rats to evaluate the time-course of dopamine uptake inhibition in nucleus accumbens induced by intravenous cocaine at a dose (1.0mg/kg) known to maintain self-administration behavior. Cocaine significantly increased the decay time of the dopamine response without altering its magnitude or time to peak. An increase in decay time was evident at 2 min, peaked at 6 min (+87%), and decreased to baseline at 18 min after a single cocaine injection. ⋯ Our data provide direct evidence for a phasic change in dopamine uptake induced by intravenous cocaine under behaviorally relevant conditions. The relatively slow and gradual development of dopamine uptake inhibition, which peaks at times when behaving rats self-inject cocaine, is inconsistent with the suggested role of this mechanism in the acute rewarding (euphoric) effects of self-injected cocaine, but supports its role in the activational and motivational aspects of drug-seeking and drug-taking behavior. Because intravenous cocaine enters the brain rapidly and peaks in neural tissue (1-2 min) long before it effectively inhibits dopamine uptake (6 min), it appears that some of the acute psychoemotional ("rush"), behavioral, autonomic, and neuronal effects of this drug, which are apparently resistant to dopamine receptor blockade, are mediated via rapid central or peripheral mechanisms independent of monoamine uptake.
-
Spinally released norepinephrine is thought to produce analgesia in part by stimulating alpha(2)-adrenergic receptors, which in turn leads to nitric oxide synthesis. Also, nitric oxide is known to react with norepinephrine in vivo in the brain to form 6-nitro-norepinephrine, which inhibits neuronal norepinephrine reuptake. In the present study, we tested the hypothesis that formation of 6-nitro-norepinephrine occurs in the spinal cord and that intrathecal administration of 6-nitro-norepinephrine produces analgesia by stimulating norepinephrine release. 6-Nitro-norepinephrine was present in rat spinal cord tissue and microdialysates of the dorsal horn and intrathecal space. ⋯ These results suggest a functional interaction between spinal nitric oxide and norepinephrine in analgesia, mediated in part by formation of 6-nitro-norepinephrine. Stimulation of auto-inhibitory alpha(2)-adrenergic receptors at noradrenergic synapses decreases norepinephrine release. Paradoxically, alpha(2)-adrenergic agonist injection increases and alpha(2)-adrenergic antagonist injection decreases norepinephrine release in the spinal cord. 6-Nitro-norepinephrine may be an important regulator of spinal norepinephrine release and could explain the positive feedback on norepinephrine release after activation of spinal alpha(2)-adrenergic receptors.
-
Glial cell line-derived neurotrophic factor receptor alpha1 (GFRalpha1, also known as GDNFR-alpha) is a glycolipid-anchored membrane protein of the GFRalpha family, which binds glial cell line-derived neurotrophic factor [Jing S. et al. (1996) Cell 85, 1113-1124; Treanor J. J. et al. (1996) Nature 382, 80-83], a survival factor for several populations of central and peripheral neurons, including midbrain dopamine neurons [Lin L. F. et al. (1993) Science 260, 1130-1132], and mediates its ligand-induced cell response via a tyrosine kinase receptor called Ret [Takahashi M. et al. (1988) Oncogene 3, 571-578; Takahashi M. and Cooper G. ⋯ There is a significantly reduced neuroprotective effect of glial cell line-derived neurotrophic factor in such heterozygous animals, compared with wild-type littermates, after cerebral ischemia. Taken together with previous data on glial cell line-derived neurotrophic factor and Ret, our results strongly suggest that GFRalpha1 is the essential GFRalpha receptor for signaling in the glial cell line-derived neurotrophic factor-Ret pathway in the kidney and enteric nervous system development, and that GFRalpha2 or GFRalpha3 cannot substitute for the absence of GFRalpha1. Moreover, neuroprotective actions of exogenous glial cell line-derived neurotrophic factor also require full GFRalpha1 receptor expression.
-
Spinal norepinephrine release and activation of spinal alpha(2)-adrenergic receptors represent important components of descending control of nociception. Recent studies have shown that nitric oxide is capable of stimulating neuronal norepinephrine release in the presence of thiol-containing compounds such as L-cysteine. In the present study, we tested a hypothesis in a rodent model of neuropathic pain that intrathecal injection of the nitric oxide donor S-nitroso-N-acetylpenicillamine and L-cysteine produces an antiallodynic action mediated by the spinal alpha(2)-adrenergic receptors. ⋯ Furthermore, the antiallodynic effect produced by intrathecal injection of a combination of S-nitroso-N-acetylpenicillamine and L-cysteine was abolished by pretreatment with intrathecal injection of a non-specific alpha-adrenergic receptor antagonist, phentolamine, or an alpha(2) receptor antagonist, idazoxan. This study provides the first functional evidence that spinal nitric oxide interacts with the thiol-containing compounds to produce an antiallodynic effect in neuropathic pain. We propose that such an action is mediated by endogenous norepinephrine and spinal alpha(2)-adrenergic receptors.
-
In the present study plastic neural responses to N-methyl-D-aspartate-induced excitotoxic lesions and the neuroprotective effects of the L-type voltage-dependent Ca(2+) channel antagonist nimodipine were investigated in the rat magnocellular nucleus basalis. Assessment of spontaneous behaviour in the elevated plus maze and small open-field paradigms on day 5 and day 14 post-surgery indicated anxiety and persistent hypoactivity of N-methyl-D-aspartate-lesioned rats, as compared with sham-operated controls. Nimodipine administration significantly alleviated the behavioural deficits. ⋯ From a pharmacological point of view, extensive sprouting of serotonergic projections in the damaged magnocellular nucleus basalis may also counteract N-methyl-D-aspartate excitotoxicity via serotonin-induced inhibition of Ca(2+) currents and membrane hyperpolarization. Hence, lesion-induced changes in spontaneous animal behaviour, such as anxiety and novelty-induced hypoactivity, may well be attributed to the considerable re-distribution of serotonergic projections in the basal forebrain. In conclusion, our present data emphasize a role of neuron-glia and neurotransmitter-system interactions in functional recovery after acute excitotoxic brain injury, and the efficacy of L-type Ca(2+) channel blockade by the selective 1,4-dihydropyridine antagonist nimodipine.