Neuroscience
-
Organotypic cultures and ileal neuromuscular preparations were used to determine (i) whether endogenous release of opioids by electrical stimulation induces mu receptor endocytosis, and (ii) whether and under which conditions ligand-induced mu receptor endocytosis influences the responsiveness of neurons expressing native mu receptors. In longitudinal muscle-myenteric plexus preparations, electrical stimulation at 20 Hz induced a prominent endocytosis of mu receptors in enteric neurons, indicating endogenous release of opioids. ⋯ In contrast, there was no reduction of the inhibitory effect of morphine, which failed to induce mu receptor endocytosis, on neurogenic cholinergic response. These results provide the first evidence for the occurrence of mu receptor endocytosis in neurons by endogenously released opioids and show that agonist-dependent mu receptor endocytosis could serve as a mechanism to regulate mu opioid receptor responsiveness to ligand stimulation when the opioid receptor reserve is reduced.
-
GABA(A) receptors are ligand-operated chloride channels assembled from five subunits in a heteropentameric manner. Using immunocytochemistry, we investigated the distribution of GABA(A) receptor subunits deriving from 13 different genes (alpha1-alpha6, beta1-beta3, gamma1-gamma3 and delta) in the adult rat brain. Subunit alpha1-, beta1-, beta2-, beta3- and gamma2-immunoreactivities were found throughout the brain, although differences in their distribution were observed. ⋯ In most pontine and cranial nerve nuclei and in the medulla, only subunit alpha1-, beta2- and gamma2-immunoreactivities were strong, whereas the inferior olive was significantly labeled only for subunits beta1, gamma1 and gamma2. In this study, a highly heterogeneous distribution of 13 different GABA(A) receptor subunit-immunoreactivities was observed. This distribution and the apparently typical patterns of co-distribution of these GABA(A) receptor subunits support the assumption of multiple, differently assembled GABA(A) receptor subtypes and their heterogeneous distribution within the adult rat brain.
-
The effects of group II and group III metabotropic glutamate receptor agonists on synaptic responses evoked by primary afferent stimulation in the dorsal horn, but mostly substantia gelatinosa, neurons were studied in the spinal cord slice preparation using conventional intracellular recording technique. Bath application of a potent metabotropic glutamate receptor 2- and 3-selective agonist (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine reversibly suppressed monosynaptic and polysynaptic excitatory postsynaptic potentials evoked by A primary afferent fibers stimulation, the effect likely mediated by mGlu3 receptor subtype. This suppressing effect of (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine on primary afferent neurotransmission was dose dependent and reduced by (S)-alpha-ethylglutamate, a group II metabotropic glutamate receptor antagonist. (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine suppressed excitatory postsynaptic potentials without inducing detectable changes of postsynaptic membrane potential and neuronal input resistance in dorsal horn neurons. ⋯ A clear facilitation of the (S)-2-amino-4-phosphonobutanoate-induced depression of monosynaptic and polysynaptic excitatory postsynaptic potentials in the absence of gamma-aminobutyric acid-subtype A receptor- and glycine-mediated synaptic inhibition was shown. Besides the depressant effect on excitatory synaptic transmission, inhibitory actions of group II and III metabotropic glutamate receptor agonists on the inhibitory postsynaptic potentials evoked by primary afferent stimulation in dorsal horn neurons were observed. These results suggest that group II and group III metabotropic glutamate receptors are expressed at primary afferent synapses in the dorsal horn region, and activation of the receptors suppresses synaptic transmission by an action on the presynaptic site.
-
Following cholinergic denervation of the hippocampus by medial septal lesions, an unusual neuronal reorganization occurs in which peripheral adrenergic fibers arising from superior cervical ganglia grow into the hippocampus (hippocampal sympathetic ingrowth). Recent studies suggest that a similar process, in which sympathetic noradrenergic axons invade the hippocampus, can occur in Alzheimer's disease patients. In the last few years, the occurrence of apoptotic cell death has been studied in Alzheimer's disease patients and in animal models of this disorder. ⋯ The cytosolic expression of bcl-x was increased in hippocampal sympathetic ingrowth compared to control and cholinergic denervation. The cytosolic activity of caspase-3 appeared to be significantly decreased in hippocampal sympathetic ingrowth and increased in cholinergic denervation groups compared to control and cholinergic denervation/hippocampal sympathetic ingrowth, respectively. From the present results, we suggest that cholinergic denervation may be responsible for pro-apoptotic responses, while hippocampal sympathetic ingrowth may protect neurons from apoptosis in rat dorsal hippocampus.
-
The vesicular monoamine transporter in the brain can sequester the neurotoxin 1-methyl-4-phenylpyridinium into synaptic vesicles and protect catecholamine-containing neurons from degeneration. Mouse nigrostriatal dopaminergic neurons, and to a lesser extent locus coeruleus noradrenergic neurons, are vulnerable to toxicity produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The present study sought to determine whether pharmacological inactivation of the vesicular monoamine transporter in the brain would enhance the degeneration of substantia nigra dopaminergic neurons and locus coeruleus noradrenergic neurons in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated animals. ⋯ In the same animals, however, vesicular monoamine transporter blockade did not enhance the effects of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine in the locus coeruleus noradrenergic system. These data are consistent with the hypothesis that the vesicular monoamine transporter can protect catecholamine-containing neurons from 1-methyl-4-phenylpyridinium-induced degeneration by sequestration of the toxin within brain vesicular monoamine transporter-containing synaptic vesicles. Since the amount of vesicular monoamine transporter in locus coeruleus neurons is more than in substantia nigra neurons, and because 1-methyl-4-phenylpyridinium is sequestered within locus coeruleus neurons to a far greater extent than within substantia nigra neurons, it may be that a greater amount of vesicular monoamine transporter inhibition is required for 1-methyl-4-phenylpyridinium to be toxic to locus coeruleus neurons than to substantia nigra dopaminergic neurons.