Neuroscience
-
Despite the highly integrated pattern of response evoked by peripheral chemoreceptor stimulation, limited information exists regarding the neurones within the nucleus of the solitary tract that mediate this reflex. Using a working heart-brainstem preparation, we describe evoked synaptic response patterns, some intrinsic membrane properties, location, morphology and axonal projections of physiologically characterised 'chemoreceptive' neurones located in the solitary tract nucleus in the rat. From 172 whole cell recordings, 56 neurones were identified as chemoreceptive since they responded to aortic injections of low doses of sodium cyanide (2-5 microg). ⋯ Neurones typically had three to eight primary dendrites which often entered the solitary tract as well as extending across the ipsilateral region of the nucleus of the solitary tract. Axons were mostly unmyelinated with boutons of the en passant variety and often ramified within the solitary tract nucleus as well as coursed towards the ipsilateral ventral medulla. In summary, this study provides new data on the neurophysiological, anatomical and morphological properties of nucleus of the solitary tract neurones responding to arterial chemoreceptors in the rat.
-
Corticotropin-releasing hormone plays a critical role in mediating the stress response. Brain circuits hypothesized to mediate stress include the thalamus, which plays a pivotal role in distributing sensory information to cortical and subcortical structures. In situ hybridization revealed neurons containing corticotropin-releasing hormone messenger RNA in the posterior thalamic nuclear group and the central medial nucleus of the thalamus, which interfaces with the ventral posteromedial nucleus (parvicellular part). ⋯ In addition to the stress-induced changes, a prominent decrease in baseline thalamic corticotropin-releasing hormone messenger RNA was observed from 1000 to 1300 h. These results show that the thalamus contains corticotropin-releasing hormone messenger RNA that increases after restraint stress, indicating a role for thalamic corticotropin-releasing hormone systems in the stress response. Stress-induced changes in thalamic corticotropin-releasing hormone messenger RNA expression appears to be regulated differently than that in the paraventricular nucleus of the hypothalamus, and may be influenced by diurnal mechanisms.
-
Much of our understanding of the visuotopic organization of striate cortex results from single-electrode penetrations and serial recording of receptive field properties. However, the quality of these maps is limited by imprecision in quantifying electrode position, combining data from multiple laminae, and eye drift during the measurement of the receptive field properties. We have addressed these concerns by using an array of 100 closely spaced microelectrodes to investigate the two-dimensional visuotopic organization of layer IV in cat striate cortex. ⋯ The simulation indicated an array with 1.2-mm spacing would completely sample the region of visual space addressed by the array. These results have implications for neuroprosthetic applications. Assuming phosphene organization resembles the visuotopic organization, remapping of visual space may be necessary to accommodate the scatter in phosphene locations.
-
Intraspinal injection of quisqualic acid, a mixed kainic acid/2-amino-3(3-hydroxy-5-methylisoxazol-4-yl)propionic acid and metabotropic glutamate receptor agonist, produces an excitotoxic injury that leads to the onset of both spontaneous and evoked pain behavior as well as changes in spinal and cortical expression of opioid peptide mRNA, preprodynorphin and preproenkephalin. What characteristics of the quisqualic acid-induced injury are attributable to activation of each receptor subtype is unknown. This study attempted to define the role of activation of the kainic acid/2-amino-3(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and metabotropic glutamate receptor subtypes in the regulation of opioid peptide expression and the onset of spontaneous and evoked pain-related behavior following excitotoxic spinal cord injury by comparing quisqualic acid-induced changes with those created by co-injection of quisqualic acid and the kainic acid/AMPA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline, (NBQX) or the metabotropic antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). ⋯ In contrast, AIDA significantly decreases quisqualic acid-induced preprodynorphin and preproenkephalin expression within the spinal cord and cortex. AIDA, but not NBQX, significantly reduced the frequency of, and delayed the onset of, quisqualic acid-induced spontaneous pain-related behavior. From these data we suggest that both the kainic acid/AMPA and metabotropic glutamate receptor subtypes are involved in the induction of the excitotoxic cascade responsible for quisqualic acid-induced neuronal damage and changes in opioid peptide mRNA expression, while metabotropic glutamate receptors may play a more significant role in the onset of post-injury pain-related behavior.
-
Heat transduction mechanisms in primary nociceptive afferents have been suggested to involve a vanilloid receptor channel with high calcium permeability. To characterize the changes in free cytosolic calcium evoked by noxious heat stimuli (< or =51 degrees C, 10s), we performed microfluorometric measurements in acutely dissociated small dorsal root ganglion neurons (< or =32.5 microm) of adult rats using the dye FURA-2. Only neurons that responded with a reversible increase in intracellular calcium to high potassium were evaluated. ⋯ Heat-induced calcium transients were also reversibly reduced by 75+/-6% in sodium-free solution and by 62+/-7% with the L-type calcium channel blocker nifedipine (5 microM). These results indicate that noxious heat rapidly increases intracellular calcium in nociceptive primary sensory neurons. Heat-sensitive vanilloid receptors are involved in the induction of calcium transients, and calcium is also released from intracellular stores, but the main fraction of calcium passes through voltage-operated calcium channels.