Neuroscience
-
Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993). ⋯ Here we examined cannabinoid actions on both glutamatergic and GABAergic synaptic transmission in the hippocampus of wild type (CB1+/+) and CB1 receptor knockout mice (CB1-/-). The synthetic cannabinoid agonist WIN55,212-2 reduced the amplitudes of excitatory postsynaptic currents in both wild type and CB1-/- mice, while inhibitory postsynaptic currents were decreased only in wild type mice, but not in CB1-/- animals. Our findings are consistent with a CB1 cannabinoid receptor-dependent modulation of GABAergic postsynaptic currents, but a novel cannabinoid-sensitive receptor must be responsible for the inhibition of glutamatergic neurotransmission.
-
The expression of interleukin-1beta and tumor necrosis factor has previously been shown to be up-regulated in the spinal cord of several rat mononeuropathy models. This present study was undertaken to determine whether blocking the action of central interleukin-1beta and tumor necrosis factor attenuates mechanical allodynia in a gender-specific manner in a rodent L5 spinal nerve transection model of neuropathic pain, and whether this inhibition occurs via down-regulation of the central cytokine cascade or blockade of glial activation. Interleukin-1 receptor antagonist or soluble tumor necrosis factor receptor was administered intrathecally via lumbar puncture to male Holtzman rats in a preventative pain strategy, in which therapy was initiated 1h prior to surgery. ⋯ At days 3 and 7 post-transection, animals receiving daily interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibited significantly less interleukin-6, but not interleukin-1beta, in the L5 spinal cord compared to vehicle-treated animals. In an existing pain paradigm, in which treatment was initiated on day 7 post-transection, interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor attenuated mechanical allodynia (P<0.05) in male rats. These findings further support a role for central interleukin-1beta and tumor necrosis factor in the development and maintenance of neuropathic pain through induction of a proinflammatory cytokine cascade.
-
The hypocretins (orexins) are a newly identified peptide family comprised of two peptides, hypocretin-1 and hypocretin-2. Recent observations suggest an involvement of these peptides in the regulation of behavioral state. For example, these peptides are found in a variety of brain regions associated with the regulation of forebrain neuronal and behavioral activity states. ⋯ Therefore, additional studies examined the sleep-wake effects of bilateral hypocretin-1 infusions into these basal forebrain structures. Robust increases in waking were observed following infusions into, but not outside, the medial septal area, the medial preoptic area and the substantia innominata. These results indicate a potentially prominent role of hypocretins in sleep-wake regulation via actions within certain basal forebrain structures and are consistent with studies indicating a prominent role of hypocretins in sleep/arousal disorders.
-
We determined whether chronic neuropathy changes response properties of neurons in the rostroventromedial medulla of rats, and whether (d-Tyr)L(Me-Phe)QPQRF-amide, a neuropeptide FF analogue, in the periaqueductal gray produces changes in responses of rostroventromedial medullary neurons that might underlie its antiallodynic effect described earlier. Single unit recordings of medullary neurons were performed in lightly anesthetized neuropathic and control animals. Spontaneous activity and the responses to noxious thermal and mechanical stimulation of the hind paw were determined with and without administration of (d-Tyr)L(Me-Phe)QPQRF-amide. ⋯ Also, light pentobarbitone anesthesia markedly attenuated, but did not abolish, behaviorally determined neuropathic symptoms. From these results we suggest that NEUTRAL-neurons of the rostroventromedial medulla may have a role in neuropathy and they may be involved in attenuation of mechanical hypersensitivity by (d-Tyr)L(Me-Phe)QPQRF-amide in the periaqueductal gray. It is proposed that in neuropathy the synaptic effects of descending impulses from medullary NEUTRAL-neurons on their axonal targets in the spinal cord are changed so that this contributes to mechanical hypersensitivity, due to mechanisms that are at least partly serotoninergic.
-
Cation-chloride cotransporters have been considered to play pivotal roles in controlling intracellular and extracellular ionic environments of neurons and hence controlling neuronal function. We investigated the total distributions of K-Cl cotransporter 1 (KCC1), KCC2 (KCC2), and Na-K-2Cl cotransporter 1 (NKCC1) messenger RNAs in the adult rat nervous system using in situ hybridization histochemistry. KCC2 messenger RNA was abundantly expressed in most neurons throughout the nervous system. ⋯ The expression levels of KCC1 and NKCC1 messenger RNAs were relatively low, however, positive neurons were observed in several regions, including the olfactory bulb, hippocampus, and in the granular layer of the cerebellum. In addition, positive signals were seen in the non-neuronal cells, such as choroid plexus epithelial cells, glial cells, and ependymal cells, suggesting that KCC1 and NKCC1 messenger RNAs were widely expressed in both neuronal and non-neuronal cells in the nervous system. These results clearly indicate a wide area- and cell-specific variation of cation chloride cotransporters, emphasizing the central role of anionic homeostasis in neuronal function and communication.