Neuroscience
-
To explore the neuronal signaling mechanisms underlying sleep regulation in the rat, the present study examined continuous intra-third ventricle infusion of N-ethylmaleimide (NEM), a sulphydryl reagent that inhibits G(i/o) protein-coupled receptor-mediated signaling pathways. The diurnal infusion of NEM (0.01-10 micromol/10 h) dose-dependently inhibited both non-rapid eye movement sleep and rapid eye movement sleep. A maximal dose of NEM (10 micromol/10 h) dramatically inhibited day-time sleep (-57% for non-rapid eye movement sleep and -89% for rapid eye movement sleep) with a compensatory increase of sleep during the subsequent night-time (+33% for non-rapid eye movement sleep and +259% for rapid eye movement sleep). ⋯ Robust A1R-like immunoreactivity was found in the ventromedial preoptic nucleus and the supraoptic nucleus. Fura-2-based Ca(2+) imaging analysis of acute hypothalamic slices further demonstrated that the A1R agonist N(6)-cyclopentyladenosine (CPA; 200 nM) inhibited spontaneous Ca(2+) oscillations and high potassium (80 mM)-induced Ca(2+) flux in the ventromedial preoptic nucleus, while NEM (100-300 microM) and an A1R antagonist 8-cyclopentyl-dipropylxanthine (300 nM) blocked the CPA actions and increased the high potassium-induced Ca(2+) flux. From these results we suggest that NEM-sensitive G protein-coupled receptor(s) may play an important role in the regulation of sleep and body temperature in the rat and one possible mechanism is an A1R-mediated regulation of intracellular Ca(2+) concentrations in the ventromedial preoptic nucleus.
-
The role of nociceptin, the endogenous ligand for the opioid receptor-like (ORL1) receptor, in nociceptive processing is controversial. Most studies demonstrate hyperalgesia following supraspinal administration, analgesia following intrathecal and peripheral administration at higher doses, and hyperalgesia following intrathecal and peripheral application at lower doses. The present study investigates the effect of nociceptin on synovial plasma extravasation and its ability to modulate 5-hydroxytryptamine-induced synovial plasma extravasation using the rat knee joint model of inflammation. ⋯ Nociceptin at concentrations up to 1 nM enhances 5-hydroxytryptamine-induced synovial plasma extravasation (up to 50%) and nociceptin at concentrations above 100 nM inhibits 5-hydroxytryptamine-induced synovial plasma extravasation (down to 45%). The novel, selective ORL1 receptor antagonist J-113397 potently inhibits the pro-inflammatory effect of nociceptin, but only partly inhibits, at higher concentrations, the anti-inflammatory effects of nociceptin. These findings demonstrate a dose-dependent bi-directional effect of nociceptin on inflammatory processes and may indicate a target for novel therapeutics.
-
To investigate the basis of the fluctuating activity present in neocortical neurons in vivo, we have combined computational models with whole-cell recordings using the dynamic-clamp technique. A simplified 'point-conductance' model was used to represent the currents generated by thousands of stochastically releasing synapses. Synaptic activity was represented by two independent fast glutamatergic and GABAergic conductances described by stochastic random-walk processes. ⋯ This procedure successfully recreated several properties of neurons intracellularly recorded in vivo, such as a depolarized membrane potential, the presence of high-amplitude membrane potential fluctuations, a low-input resistance and irregular spontaneous firing activity. In addition, the point-conductance model could simulate the enhancement of responsiveness due to background activity. We conclude that many of the characteristics of cortical neurons in vivo can be explained by fast glutamatergic and GABAergic conductances varying stochastically.
-
We applied calcitonin gene-related peptide (CGRP) by continuous perfusion of the extrajunctional surface of the adult rat soleus muscle in vivo. We obtained this through a fine polyethylene catheter connected to an Alzet pump implanted in the animal. The perfusion induced a local acetylcholine receptor accumulation in the membrane of the muscle fibres starting with a delay of one to two days, provided a chronic conduction block of soleus innervation was concomitantly present. ⋯ We suggest that CGRP may act on the extrajunctional membrane of muscle fibres to help induce acetylcholine receptor accumulation after appropriate receptors for the peptide are re-expressed due to muscle paralysis. Whilst this is compatible with a role of CGRP in synaptogenesis, a recent study showed that alpha-CGRP(-/-) mutant mice have normal neuromuscular junction development. However, given the redundancy of factors involved in acetylcholine receptor accumulation, further experiments on multiple knock-outs need to be performed before a final conclusion is reached about the physiological significance of CGRP.
-
Nociceptin (NOC), also known as orphanin FQ, is a newly discovered endogenous ligand for the opioid receptor-like1 (ORL1) receptor. Although NOC has been shown to modulate nociceptive transmission, mechanisms for this action are still unknown. In the present study, actions of NOC on substantia gelatinosa (SG) neurones were examined in adult rat spinal cord slice preparations by using the whole-cell patch-clamp technique. ⋯ When examined using some inhibitors with respect to the ORL1 receptor, the NOC (1 microM) current was depressed in amplitude by a putative NOC precursor product, nocistatin (1 microM; by 18+/-4%, n=6) and also by a non-peptidyl ORL1 receptor antagonist, CompB (1 microM; by 64+/-10%, n=7) without a change in holding currents. On the other hand, a putative ORL1 receptor antagonist, [Phe(1)psi(CH(2)-NH)Gly(2)]nociceptin-(1-13)-NH(2) (1 microM; which is a derivative of NOC), by itself induced an outward current (7+/-3 pA, n=8), during which the NOC current was suppressed in amplitude by 56+/-8% (n=8). We conclude that NOC activates in SG neurones a K(+) channel exhibiting a mild inwardly rectification through the activation of ORL1 receptor; this hyperpolarising action of NOC might contribute to at least a part of its antinociceptive effect.