Neuroscience
-
Recent evidence indicates that stimulation of postsynaptic 5-HT(1A) receptors abates excitotoxic neuronal death. Here we investigated whether oral post-lesion administration of the 5-HT(1A) receptor agonist (-)-(R)-2-[4-[[(3,4-dihydro-2H-1-benzopyran-2-yl)methyl]amino]butyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide monohydrochloride (Repinotan HCl) attenuates N-methyl-D-aspartate (NMDA) excitotoxicity (60 nmol/microl) in the rat magnocellular nucleus basalis. Repinotan HCl (1 mg/kg) was administered from day 1, 2, 3, or 6 post-surgery twice daily for five consecutive days. ⋯ Whereas the neuroprotective profile of Repinotan HCl was superior to that of 8-OH-DPAT, oral administration of both 5-HT(1A) receptor agonists yielded largely equivalent behavioral recovery after NMDA infusion in the magnocellular nucleus basalis. In conclusion, the present data indicate the potent neuroprotective action of the 5-HT(1A) receptor agonist Repinotan HCl with a peak efficacy of delayed (2-3 day) post-lesion drug treatment in vivo. Post-lesion treatment with 5-HT(1A) receptor agonists may therefore be of significance in the intervention of neuronal damage associated with acute excitotoxic conditions.
-
Dextran-conjugated Ca(2+) indicators were injected into the accessory olfactory bulb of frogs in vivo to selectively fill presynaptic terminals of mitral cells at their termination in the ipsilateral amygdala. After one to three days of uptake and transport, the forebrain hemisphere anterior to the tectum was removed and maintained in vitro for simultaneous electrophysiological and optical measurements. Ca(2+) influx into these terminals was compared to synaptic transmission between mitral cells and amygdala neurons under conditions of reduced Ca(2+) influx resulting from reduced extracellular [Ca(2+)], blockade of N- and P/Q-type channels, and application of the cholinergic agonist carbachol. ⋯ Carbachol (100 microM) acting via muscarinic receptors had no effect on the afferent volley, but rapidly and reversibly reduced Ca(2+) influx through both N- and P/Q-type channels by 51% and postsynaptic responses by 78%, i.e. release was proportional to Ca(2+) raised to the power approximately 2.5. The weak dependence of release on changes in Ca(2+) when channel toxins block channels suggests little overlap between Ca(2+) microdomains from channels supporting release or substantial segregation of channel subtypes between terminals. The proportionately greater reduction of transmission by muscarinic receptors compared to Ca(2+) channel toxins suggests that they directly affect the release machinery in addition to reducing Ca(2+) influx.
-
To investigate the basis of the fluctuating activity present in neocortical neurons in vivo, we have combined computational models with whole-cell recordings using the dynamic-clamp technique. A simplified 'point-conductance' model was used to represent the currents generated by thousands of stochastically releasing synapses. Synaptic activity was represented by two independent fast glutamatergic and GABAergic conductances described by stochastic random-walk processes. ⋯ This procedure successfully recreated several properties of neurons intracellularly recorded in vivo, such as a depolarized membrane potential, the presence of high-amplitude membrane potential fluctuations, a low-input resistance and irregular spontaneous firing activity. In addition, the point-conductance model could simulate the enhancement of responsiveness due to background activity. We conclude that many of the characteristics of cortical neurons in vivo can be explained by fast glutamatergic and GABAergic conductances varying stochastically.
-
The isolectin I-B4 (IB4) binds specifically to a subset of small sensory neurons. We used a conjugate of IB4 and the toxin saporin to examine in vivo the contribution of IB4-binding sensory neurons to nociception. A single dose of the conjugate was injected unilaterally into the sciatic nerve of rats. ⋯ These results demonstrate the utility of the IB4-saporin conjugate as a tool for selective cytotoxic targeting and provide behavioral evidence for the role of IB4-binding neurons in nociception. The decreased sensitivity to noxious stimuli associated with the loss of IB4-binding neurons indicates that these sensory neurons are essential for the signaling of acute pain. Furthermore, the unexpected recovery of nociceptive thresholds suggests that the loss of IB4-binding neurons triggers changes in the processing of nociceptive information, which may represent a compensatory mechanism for the decreased sensitivity to acute pain.
-
We applied calcitonin gene-related peptide (CGRP) by continuous perfusion of the extrajunctional surface of the adult rat soleus muscle in vivo. We obtained this through a fine polyethylene catheter connected to an Alzet pump implanted in the animal. The perfusion induced a local acetylcholine receptor accumulation in the membrane of the muscle fibres starting with a delay of one to two days, provided a chronic conduction block of soleus innervation was concomitantly present. ⋯ We suggest that CGRP may act on the extrajunctional membrane of muscle fibres to help induce acetylcholine receptor accumulation after appropriate receptors for the peptide are re-expressed due to muscle paralysis. Whilst this is compatible with a role of CGRP in synaptogenesis, a recent study showed that alpha-CGRP(-/-) mutant mice have normal neuromuscular junction development. However, given the redundancy of factors involved in acetylcholine receptor accumulation, further experiments on multiple knock-outs need to be performed before a final conclusion is reached about the physiological significance of CGRP.