Neuroscience
-
The expression of interleukin-1beta and tumor necrosis factor has previously been shown to be up-regulated in the spinal cord of several rat mononeuropathy models. This present study was undertaken to determine whether blocking the action of central interleukin-1beta and tumor necrosis factor attenuates mechanical allodynia in a gender-specific manner in a rodent L5 spinal nerve transection model of neuropathic pain, and whether this inhibition occurs via down-regulation of the central cytokine cascade or blockade of glial activation. Interleukin-1 receptor antagonist or soluble tumor necrosis factor receptor was administered intrathecally via lumbar puncture to male Holtzman rats in a preventative pain strategy, in which therapy was initiated 1h prior to surgery. ⋯ At days 3 and 7 post-transection, animals receiving daily interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibited significantly less interleukin-6, but not interleukin-1beta, in the L5 spinal cord compared to vehicle-treated animals. In an existing pain paradigm, in which treatment was initiated on day 7 post-transection, interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor attenuated mechanical allodynia (P<0.05) in male rats. These findings further support a role for central interleukin-1beta and tumor necrosis factor in the development and maintenance of neuropathic pain through induction of a proinflammatory cytokine cascade.
-
Cholinergic neurons of the basal forebrain form one of the neuron populations that are susceptible to excitotoxic injury. Whereas neuropharmacological studies have aimed at rescuing cholinergic neurons from acute excitotoxic attacks, the short-term temporal profile of excitotoxic damage to cholinergic nerve cells remains largely elusive. The effects of N-methyl-D-aspartate (NMDA) infusion on cytochemical markers of cholinergic neurons in rat magnocellular nucleus basalis were therefore determined 4, 24 and 48 h post-lesion. ⋯ Carbocyanine 3-192IgG labelling in the ipsilateral basal forebrain exceeded that of the contralateral hemisphere at all time points investigated and progressively declined in the damaged magnocellular nucleus basalis up to 48 h after NMDA infusion. The present study indicates that excitotoxic lesion-induced alteration of cholinergic neuronal markers is a rapid and gradual process reaching its maximum 24 h post-surgery. Furthermore, in vivo labelling of cholinergic neurons may be applied to indicate neuronal survival under pathological conditions, and enable to follow their degeneration process under a variety of experimental conditions.
-
Formalin injected subcutaneously into the paw is a widely used model of pain. This procedure evokes a short-lasting period of flinching (phase 1) and a long-lasting period of intense flinching (phase 2) following a very short period of quiescence. Phase 2 has been extensively used to support the involvement of central (spinal cord) sensitization in inflammatory hyperalgesia. ⋯ Pretreatment of the paws with a mast cell stabilizer, sodium cromoglycate, significantly reduced the second phase of the formalin injection model. From these results we suggest that phases 1 and 2 of the formalin test are dependent upon the ongoing afferent input. Furthermore, while histamine H1 participates in both phases, 5-hydroxytryptamine(4/3) participates in phase 1 and 5-hydroxytryptamine(1A) in phase 2.
-
The hypocretins (orexins) are a newly identified peptide family comprised of two peptides, hypocretin-1 and hypocretin-2. Recent observations suggest an involvement of these peptides in the regulation of behavioral state. For example, these peptides are found in a variety of brain regions associated with the regulation of forebrain neuronal and behavioral activity states. ⋯ Therefore, additional studies examined the sleep-wake effects of bilateral hypocretin-1 infusions into these basal forebrain structures. Robust increases in waking were observed following infusions into, but not outside, the medial septal area, the medial preoptic area and the substantia innominata. These results indicate a potentially prominent role of hypocretins in sleep-wake regulation via actions within certain basal forebrain structures and are consistent with studies indicating a prominent role of hypocretins in sleep/arousal disorders.
-
The role of N-methyl-D-aspartate (NMDA) and non-NMDA receptors in the spinal cord in the transmission of nociceptive afferents from superficial tissue and muscle was studied by examining the effects of NMDA or non-NMDA receptor antagonists on Fos expression in the spinal dorsal horn. Muscle inflammation was induced by injection of turpentine oil into the gastrocnemius muscle, whereas superficial tissue inflammation was induced by an intraplantar injection of turpentine oil into the hindpaw. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP-5), the non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) or normal saline were intrathecally administered 15 min before an intramuscular or intraplantar injection of turpentine oil. ⋯ Injection of normal saline did not influence the numbers of Fos-LI neurons. These results indicate that different glutamate receptors in the dorsal horn of the spinal cord may mediate nociceptive input from superficial tissue (particularly skin) and muscle. DNQX receptors may mediate transmission of nociceptive information originating in muscle, while NMDA receptors may preferentially mediate transmission of nociceptive information originating in skin.