Neuroscience
-
Synapse formation in CNS neurons requires appropriate sorting and clustering of neurotransmitter receptors and associated proteins at postsynaptic sites. In GABAergic synapses, clustering of GABA(A) receptors requires gephyrin, but it is not known whether presynaptic signals are also involved in this process. To investigate this issue, we analyzed the subcellular distribution of GABA(A) receptors and gephyrin in primary cultures of cerebellar granule cells, by comparing cells receiving GABAergic input with cells devoid of such afferents. ⋯ To determine whether signaling mediated by GABA(A) receptors is required for the formation of appropriately matched gephyrin clusters, cultures were treated chronically with bicuculline, or with either muscimol or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol. All these treatments failed to influence the distribution of gephyrin clusters. We conclude that although GABAergic presynaptic terminals have a preponderant influence on the distribution of gephyrin clusters in dendrites of cerebellar granule cells, GABA transmission is dispensable for postsynaptic clustering of gephyrin and GABA(A) receptors and for the formation of appropriately matched GABAergic synapses.
-
Precursor cells in the ependyma of the lateral ventricles of adult mammalian brain have been reported in brain, and also in the spinal cord. The present study used antibody to the intermediate filament protein (nestin) as an immunohistochemical marker for neural stem cells and precursor cells in a rat model of spinal cord trauma. Male Sprague-Dawley rats (n=25) had a laminectomy at Thll-Thl2, and spinal cord contusion was created by compression with 30 g of force for 10 min. ⋯ The latter was accompanied by glial fibrillary acidic protein positivity into very long arborizing processes, morphologically compatible with radial glia. The findings suggest two possible sources of precursor cells in adult mammalian spinal cord; ependyma of the central canal and subpial astrocytes. Subpial astrocytes may be associated with neural repair and regeneration after spinal cord injury.
-
We examined the effects of 4-aminopyridine (4-AP) on isolated horizontal (superficial, middle and deep) rat neocortical slices in order to study laminar synchronous network behavior directly. Application of 4-AP induced spontaneous synchronized activity in all of these types of slices. In middle and deep layer slices the activities were similar to those of coronal slices, consisting of periodic short- and long-duration discharges. ⋯ By contrast, conventional coronal slices showed robust spontaneous epileptiform discharges under these circumstances. In intact coronal slices focal 4-AP application in superficial layers induced spontaneous inhibitory GABAergic events, while delivery into deep layers led to epileptiform discharges. From these results we conclude that: (1) 4-AP-induced population discharges are driven by glutamatergic transmission in middle and deep layer horizontal slices, and by GABAergic transmission in superficial layers; (2) only superficial layers are capable of supporting synchronized GABAergic activity independent of excitatory amino acid transmission; (3) superficial layers do not sustain epileptiform activity in the absence of deep layer neurons; and (4) synchronized superficial networks can inhibit deep layer neuronal activity.
-
Comparative Study
Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors.
Mice with a targeted disruption of adenosine A(3) receptor (A(3)AR) gene were assessed for their nociceptive threshold and for their localized inflammatory response following carrageenan injected into the hindpaw. Under basal conditions no difference was seen between A(3)AR knock-out (A(3)AR(-/-)) and wild-type (A(3)AR(+/+)) mice in nociceptive response to mechanical or heat stimuli. ⋯ Thus, mice lacking A(3)AR had deficits in generating the localized inflammatory response to carrageenan, supporting a pro-inflammatory role of A(3)AR in peripheral tissues. However, no evidence for a role of A(3)AR in nociception and the antinociceptive effect of R-PIA was found.
-
Effects of C-fiber activation on type I slowly adapting mechanoreceptor responses were investigated in a rat in vitro nerve-skin preparation using controlled mechanical stimuli. Two changes in behavior were evoked by antidromic C-fiber stimulation: (1). The type I response to mechanical stimuli was modulated in a graded fashion by antidromic C-fiber activation. ⋯ Immunohistochemical staining revealed both substance P- and calcitonin gene-related peptide-like immunoreactivity in small unmyelinated nerve fibers entering the touch dome. These results support the concepts that (1). the type I slowly adapting mechanoreceptor in rat receives input from nociceptive terminals within the touch dome. (2). The function of type I slowly adapting mechanoreceptors is modulated by axon reflex activation of nociceptor terminals, which may play a role in altering the type I response during states of mechanical allodynia and have paracrine and autocrine influences on maintenance of touch dome structure.