Neuroscience
-
Synapse formation in CNS neurons requires appropriate sorting and clustering of neurotransmitter receptors and associated proteins at postsynaptic sites. In GABAergic synapses, clustering of GABA(A) receptors requires gephyrin, but it is not known whether presynaptic signals are also involved in this process. To investigate this issue, we analyzed the subcellular distribution of GABA(A) receptors and gephyrin in primary cultures of cerebellar granule cells, by comparing cells receiving GABAergic input with cells devoid of such afferents. ⋯ To determine whether signaling mediated by GABA(A) receptors is required for the formation of appropriately matched gephyrin clusters, cultures were treated chronically with bicuculline, or with either muscimol or 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol. All these treatments failed to influence the distribution of gephyrin clusters. We conclude that although GABAergic presynaptic terminals have a preponderant influence on the distribution of gephyrin clusters in dendrites of cerebellar granule cells, GABA transmission is dispensable for postsynaptic clustering of gephyrin and GABA(A) receptors and for the formation of appropriately matched GABAergic synapses.
-
Receptors for ATP have been reported on peripheral nerve terminals. It is a widespread assumption that the axonal membrane does not possess this kind of chemosensitivity, although P2X purinoceptors have been found in isolated rat vagus nerve. Therefore, in the present study, effects of ATP and analogues were tested on the excitability of unmyelinated axons in isolated rat sural nerve, mouse dorsal roots, and human sural nerve. ⋯ However, we could not detect P2X receptors in this preparation with our techniques. These data show that the ATP sensitivity of sensory neurones is not restricted to their terminals. Activation of axonal purinergic receptors may contribute to the transduction of sensory, including nociceptive, stimuli.
-
We examined the effects of 4-aminopyridine (4-AP) on isolated horizontal (superficial, middle and deep) rat neocortical slices in order to study laminar synchronous network behavior directly. Application of 4-AP induced spontaneous synchronized activity in all of these types of slices. In middle and deep layer slices the activities were similar to those of coronal slices, consisting of periodic short- and long-duration discharges. ⋯ By contrast, conventional coronal slices showed robust spontaneous epileptiform discharges under these circumstances. In intact coronal slices focal 4-AP application in superficial layers induced spontaneous inhibitory GABAergic events, while delivery into deep layers led to epileptiform discharges. From these results we conclude that: (1) 4-AP-induced population discharges are driven by glutamatergic transmission in middle and deep layer horizontal slices, and by GABAergic transmission in superficial layers; (2) only superficial layers are capable of supporting synchronized GABAergic activity independent of excitatory amino acid transmission; (3) superficial layers do not sustain epileptiform activity in the absence of deep layer neurons; and (4) synchronized superficial networks can inhibit deep layer neuronal activity.
-
Comparative Study
Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors.
Mice with a targeted disruption of adenosine A(3) receptor (A(3)AR) gene were assessed for their nociceptive threshold and for their localized inflammatory response following carrageenan injected into the hindpaw. Under basal conditions no difference was seen between A(3)AR knock-out (A(3)AR(-/-)) and wild-type (A(3)AR(+/+)) mice in nociceptive response to mechanical or heat stimuli. ⋯ Thus, mice lacking A(3)AR had deficits in generating the localized inflammatory response to carrageenan, supporting a pro-inflammatory role of A(3)AR in peripheral tissues. However, no evidence for a role of A(3)AR in nociception and the antinociceptive effect of R-PIA was found.
-
X-linked forms of non-specific mental retardation are complex disorders, for which mutations in several genes have recently been identified. These include OPHN1, GDI1, PAK3, IL1RAPL, TM4SF2, FMR2 and RSK2. ⋯ Furthermore we observed a significant increase in mRNA levels of PAK3 and IL1RAPL following LTP induction. These results suggest a possible role for these four genes in activity-dependent brain plasticity.