Neuroscience
-
Hypocretin 2 (orexin B) is a hypothalamic neuropeptide thought to be involved in regulating energy homeostasis, autonomic function, arousal, and sensory processing. Neural circuits in the caudal nucleus tractus solitarius (NTS) integrate viscerosensory inputs, and are therefore implicated in aspects of all these functions. We tested the hypothesis that hypocretin 2 modulates fast synaptic activity in caudal NTS areas that are generally associated with visceral sensation from cardiorespiratory and gastrointestinal systems. ⋯ The increase in EPSC frequency persisted in the presence of tetrodotoxin, suggesting a role for the peptide in regulating glutamate release in the NTS by acting at presynaptic terminals. These data suggest that hypocretin 2 modulates excitatory, but not inhibitory, synapses in caudal NTS neurons, including viscerosensory inputs. The selective nature of the effect supports the hypothesis that hypocretin 2 plays a role in modulating autonomic sensory signaling in the NTS.
-
Annexins and S100 proteins constitute two multigenic families of Ca2+-modulated proteins that have been implicated in the regulation of both intracellular and extracellular activities. Some annexins can interact with certain S100 protein dimers thereby forming heterotetramers in which an S100 dimer crosslinks two copies of the partner annexin. It is suggested that S100 protein binding to an annexin might serve the function of regulating annexin function and annexin binding to an S100 protein might regulate S100 function. ⋯ Immunoprecipitation studies indicated that ANXA6/S100A1 and ANXA6/S100B complexes formed in vivo. Whereas, ANXA5 was not recovered in S100A1 or S100B immunoprecipitates. From our data we suggest that: (i) ANXA5 and ANXA6, and S100A1 and S100B can be used as markers of skeletal muscle development; (ii) ANXA6 and S100A1 and S100B appear strategically located close to or on skeletal muscle membrane organelles that are critically involved in the regulation of Ca2+ fluxes, thus supporting previous in vitro observations implicating S100A1 and ANXA6 in the stimulation of Ca2+-induced Ca2+ release; and (iii) ANXA6/S100A1 and ANXA6/S100B complexes can form in vivo thereby regulating each other activities and/or acting in concert to regulate membrane-associated activities.
-
The Edinger-Westphal nucleus is the primary source of urocortin in rodent brain. Mapping of inducible transcription factors has shown that the Edinger-Westphal nucleus is preferentially sensitive to ethanol self-administration. In the present study we have immunohistochemically compared expression of urocortin and c-Fos in naive and ethanol-treated C57BL/6J and DBA/2J mouse inbred strains. ⋯ Behavioral analysis of the B6D2 F2 intercross, a heterogeneous mouse strain, showed that the number of urocortin cells is positively correlated with basal temperatures and ethanol-induced hypothermia. Involvement of the Edinger-Westphal in alcohol-induced hypothermia is further confirmed by analysis of urocortin cells in the HOT/COLD selected lines. These results provide evidence that C57BL/6J and DBA/2J mice have structural differences in the Edinger-Westphal that can result in activation of different populations of neurons upon alcohol intoxication contributing to differential thermoregulation between these inbred strains.
-
The aim of this study was to test the hypothesis that under prolonged global ischemic injury, the somatosensory thalamus and the cortex would manifest differential susceptibility leading to varying degrees of thalamo-cortical dissociation. The thalamic electrical responses displayed increasing suppression with longer durations of ischemia leading to a significant thalamo-cortical electrical dissociation. The data also point to a selective vulnerability of the network oscillations involving the thalamic relay and reticular thalamic neurons. ⋯ There was no significant reduction in somatosensory cortical N20 (negative peak in the cortical response at 20 ms after stimulus) amplitude in any of the three groups with asphyxia indicating a thalamo-cortical dissociation in G3. Further, rhythmic spindle oscillations in the thalamic VPL nuclei that normally accompany the ON response recover either slowly after the recovery of ON response (in the case of G1 and G2) or do not recover at all (in the case of G3). We conclude that there is strong evidence for selective vulnerability of thalamic relay neurons and its network interactions with the inhibitory interneurons in the somatosensory pathway leading to a thalamo-cortical dissociation after prolonged durations of global ischemia.
-
Dopaminergic projections to the forebrain arising from the mesencephalic ventral tegmentum modulate information processing in cortical and limbic sites. The lateral hypothalamus is crucial for the coordination of behavioral responses to interoceptive cues. The presence of a hypothalamic input to the ventral tegmental area has been known for some time, but the organization of this pathway has received little attention. ⋯ Moreover, axons that were anterogradely labeled from the lateral hypothalamus were seen throughout the ventral tegmental area, and were often in close proximity to the dendrites and somata of dopamine neurons. Dopamine and orexin fibers were found to codistribute in the medial prefrontal cortex; orexin fibers were present in lower density in the medial shell of the nucleus accumbens, and the central and posterior basolateral nuclei of the amygdala. We conclude that the lateral hypothalamic/perifornical projection represents an anatomical substrate by which interoceptive-related signals may influence forebrain dopamine function.