Neuroscience
-
Activation of muscarinic receptors leads to proliferation of astroglial cells and this effect is inhibited by ethanol. Among the intracellular pathways involved in the mitogenic action of muscarinic agonists, activation of the atypical protein kinase C zeta (PKC zeta) appears to be of most importance, and is also affected by low ethanol concentrations. PKC zeta has been reported to activate nuclear factor kappaB (NF-kappaB), a transcription factor that has been shown to play an important role in cell proliferation. ⋯ Increased DNA synthesis was also antagonized by the IkappaBalpha kinase inhibitor BAY 11-7082. Ethanol (25-100 mM) inhibited the translocation of p65 and the binding of NF-kappaB to DNA in both 1321N1 astrocytoma cells and primary rat cortical astrocytes. Together, these results suggest that activation of NF-kappaB by muscarinic receptors in astroglial cells is important for carbachol-induced DNA synthesis and that ethanol-mediated inhibition of cell proliferation may be due in part to inhibition of NF-kappaB activation.
-
Psychomotor stimulants and neuroleptics exert multiple effects on dopaminergic signaling and produce the dopamine (DA)-related behaviors of motor activation and catalepsy, respectively. However, a clear relationship between dopaminergic activity and behavior has been very difficult to demonstrate in the awake animal, thus challenging existing notions about the mechanism of these drugs. The present study examined whether the drug-induced behaviors are linked to a presynaptic site of action, the DA transporter (DAT) for psychomotor stimulants and the DA autoreceptor for neuroleptics. ⋯ Taken together, the results suggest that a dopaminergic presynaptic site is a target of systemically applied psychomotor stimulants and regulates the postsynaptic action of neuroleptics during behavior. This finding was made possible by a voltammetric microprobe with millisecond temporal resolution and its use in the awake animal to assess release and uptake, two key mechanisms of dopaminergic neurotransmission. Moreover, the results indicate that presynaptic mechanisms may play a more important role in DA-behavior relationships than is currently thought.
-
Comparative Study
Raphe pallidus neurons mediate prostaglandin E2-evoked increases in brown adipose tissue thermogenesis.
To elucidate central neural pathways contributing to the febrile component of the acute phase response to pyrogenic insult, I sought to determine whether activation of neurons in the rostral raphe pallidus (RPa) is required for the increase in brown adipose tissue (BAT) thermogenesis evoked by i.c.v. prostaglandin E(2) (PGE(2)) in urethane-chloralose-anesthetized, ventilated rats. BAT sympathetic nerve activity (SNA; +224% of control), BAT temperature (+1.8 degrees C), expired CO(2) (+1.3%), mean arterial pressure (+23 mm Hg), and heart rate (+73 beats per minute) were significantly increased after i.c.v. PGE(2) (2 microg). ⋯ In conclusion, activation of neurons in RPa, possibly BAT sympathetic premotor neurons, is essential for the increases in BAT SNA and BAT thermogenesis stimulated by i.c.v. administration of PGE(2). The increased heart rate likely contributing to an augmented cardiac output supporting the increased BAT thermogenesis in response to PGE(2) is also dependent on neurons in RPa. These results contribute to our understanding of central neural substrates for the augmented thermogenesis during fever.
-
Calcitonin gene-related peptide (CGRP) is widely distributed in the central and peripheral nervous system. Its highly diverse biological activities are mediated via the G protein-coupled receptor that uniquely requires two accessory proteins for optimal function. CGRP receptor component protein (RCP) is a coupling protein necessary for CGRP-receptor signaling. ⋯ Our data suggest that the distribution of RCP immunoreactivity is closely matched with CGRP immunoreactivity in most of central and peripheral nervous systems. The co-localization of RCP and CGRP in motoneurons and primary sensory neurons suggests that CGRP has an autocrine or paracrine effect on these neurons. Moreover, our data also suggest that RCP expression in DRG and spinal cord can be modulated during CGRP receptor blockade, inflammation or neuropathic pain and this CGRP receptor-associated protein is dynamically regulated.
-
The present study was designed to investigate whether a state of neuropathic pain induced by sciatic nerve ligation could alter the rewarding effect, antinociception, and G-protein activation induced by a prototype of mu-opioid receptor agonist morphine in the mouse. The sciatic nerve ligation caused a long-lasting and profound thermal hyperalgesia. Under this neuropathic pain-like state, an i.c.v. morphine-induced place preference was observed in sham-operated mice but not in sciatic nerve-ligated mice. ⋯ Reverse transcription-polymerase chain reaction analysis showed that sciatic nerve ligation did not alter the mRNA product of mu-opioid receptors in the lower midbrain, indicating that a decrease in some mu-opioid receptor functions may result from the uncoupling of mu-opioid receptors from G-proteins. We found a significant increase in protein levels of G-protein-coupled receptor kinase 2, which causes receptor phosphorylation in membranes of the lower midbrain but not in the pons/medulla, obtained from mice with nerve injury, whereas there were no changes in the protein level of phosphorylated-protein kinase C in the lower midbrain. These results suggest that the uncoupling of mu-opioid receptors from G-proteins by G-protein-coupled receptor kinase 2 in the lower midbrain may, at least in part, contribute to the suppression of the rewarding effect of morphine under neuropathic pain.