Neuroscience
-
Comparative Study
Medullary reticulospinal tract mediating a generalized motor inhibition in cats: III. Functional organization of spinal interneurons in the lower lumbar segments.
The previous report of intracellular recording of hindlimb motoneurons in decerebrate cats [ 511] has suggested that the following mechanisms are involved in a generalized motor inhibition induced by stimulating the medullary reticular formation. First, the motor inhibition, which was prominent in the late latency (30-80 ms), can be ascribed to the inhibitory effects in parallel to motoneurons and to interneuronal transmission in reflex pathways. Second, both a group of interneurons receiving inhibition from flexor reflex afferents and a group of Ib interneurons mediate the late inhibitory effects upon the motoneurons. ⋯ Neither excitatory nor inhibitory effects with a late latency were observed in 69 (36.1%) cells which were located in the intermediate region and dorsal horn. These results suggest the presence of a functional organization of the spinal cord with respect to the production of the generalized motor inhibition. Lamina VII interneurons that receive inhibition from volleys in FRAs possibly mediate the postsynaptic inhibition from the medullary reticular formation in parallel to motoneurons and to interneurons in reflex pathways.
-
Comparative Study
Thalamic neuronal activity in rats with mechanical allodynia following contusive spinal cord injury.
Pain and allodynia following spinal cord injury are poorly understood and difficult to treat. Since there is evidence that supraspinal mechanisms are important in such pain, we have studied the role of the thalamus in an experimental model of spinal injury. Extracellular recordings were obtained from neurones of the thalamic nucleus ventralis postero-lateralis (VPL) in normal rats and those which had sustained a contusive spinal cord injury to the thoraco-lumbar junction 7 days previously. ⋯ We have previously reported that a proportion of spinal neurones in allodynic spinally injured rats show increased evoked responses and afterdischarges following brushing the skin and hence the enhanced thalamic responses may reflect a greater spinal input. In view of the increasing evidence that thalamo-cortical rhythmical firing is linked to sensorimotor and cognitive brain functions, we propose that pain following brushing the skin results from an exaggerated spinal input being processed by a dysrhythmic thalamus. Thus both spinal and thalamic mechanisms may be important in the genesis of pain and allodynia following spinal cord injury.
-
Comparative Study
Song activation by testosterone is associated with an increased catecholaminergic innervation of the song control system in female canaries.
In canaries, singing and a large number of morphological features of the neural system that mediates the learning, perception and production of song exhibit marked sex differences. Although these differences have been mainly attributed to sex-specific patterns of the action of testosterone and its metabolites, the mechanisms by which sex steroids regulate brain and behavior are far from being completely understood. Given that the density of immunoreactive catecholaminergic fibers that innervate telencephalic song nuclei in canaries is higher in males, which sing, than in females, which usually do not sing, we hypothesized that some of the effects induced by testosterone on song behavior are mediated through the action of the steroid on the catecholaminergic neurons which innervate the song control nuclei. ⋯ By contrast, testosterone did not affect the catecholaminergic innervation of the telencephalic areas adjacent to HVC and RA. Together these data demonstrate that, in parallel to its effects on song behavior and on the morphology of the song control system, testosterone also regulates the catecholaminergic innervation of most telencephalic song control nuclei in canaries. The endocrine regulation of singing may thus involve the neuromodulatory action of specialized dopaminergic and/or noradrenergic projections onto several key parts of the song control system.
-
Comparative Study
Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity.
This study was designed to identify molecular mechanisms by which exercise affects synaptic-plasticity in the hippocampus, a brain area whose function, learning and memory, depends on this capability. We have focused on the central role that brain-derived neurotrophic factor (BDNF) may play in mediating the effects of exercise on synaptic-plasticity. In fact, this impact of exercise is exemplified by our finding that BDNF regulates the mRNA levels of two end products important for neural function, i.e. cAMP-response-element binding (CREB) protein and synapsin I. ⋯ The use of a novel microbead injection method in our blocking experiments and Taqman reverse transcription polymerase reaction (RT-PCR) for RNA quantification, have enabled us to evaluate the contribution of different pathways to the exercise-induced increases in the mRNA levels of BDNF, TrkB, CREB, and synapsin I. We found that although BDNF mediates exercise-induced hippocampal plasticity, additional molecules, i.e. the N-methyl-D-aspartate receptor, calcium/calmodulin protein kinase II and the mitogen-activated protein kinase cascade, modulate its effects. Since these molecules have a well-described association to BDNF action, our results illustrate a basic mechanism through which exercise may promote synaptic-plasticity in the adult brain.
-
Numerous studies have investigated the expression of various cytokine families in the CNS after brain injury. The gp130 or interleukin (IL)-6-type cytokines have received a great deal of focus, and it is clear that they exhibit an acute and robust upregulation in various brain injury models. We are interested to determine, however, whether endogenously expressed cytokines in the CNS act in a direct neuromodulatory manner. ⋯ SOCS-2 displayed a relatively higher level of basal expression, particularly in CA3, and a mild and transient downregulation by 24 h. These findings corroborate the hypothesis that seizure-induced gp130 cytokines play a direct neuromodulatory role in the hippocampus. Since in our previous study we did not detect cytokine receptor expression in non-principal cells, it is unclear what elicits SOCS-3 expression in this population.